# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.∏ # See the License for the specific language governing permissions and # limitations under the License. # Modified from Whisper (https://github.com/openai/whisper/whisper/) import os.path import sys import distutils import numpy as np import paddle import soundfile from yacs.config import CfgNode from paddlespeech.s2t.models.whisper import log_mel_spectrogram from paddlespeech.s2t.models.whisper import ModelDimensions from paddlespeech.s2t.models.whisper import transcribe from paddlespeech.s2t.models.whisper import Whisper from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() class WhisperInfer(): def __init__(self, config, args): self.args = args self.config = config self.audio_file = args.audio_file paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu') config.pop("ngpu") #load_model model_dict = paddle.load(self.config.model_file) config.pop("model_file") dims = ModelDimensions(**model_dict["dims"]) self.model = Whisper(dims) self.model.load_dict(model_dict) def run(self): check(args.audio_file) with paddle.no_grad(): temperature = config.pop("temperature") temperature_increment_on_fallback = config.pop( "temperature_increment_on_fallback") if temperature_increment_on_fallback is not None: temperature = tuple( np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)) else: temperature = [temperature] #load audio mel = log_mel_spectrogram(args.audio) result = transcribe( self.model, mel, temperature=temperature, **config) if args.result_file is not None: with open(args.result_file, 'w') as f: f.write(str(result)) return result def check(audio_file: str): if not os.path.isfile(audio_file): print("Please input the right audio file path") sys.exit(-1) logger.info("checking the audio file format......") try: _, sample_rate = soundfile.read(audio_file) except Exception as e: logger.error(str(e)) logger.error( "can not open the wav file, please check the audio file format") sys.exit(-1) logger.info("The sample rate is %d" % sample_rate) assert (sample_rate == 16000) logger.info("The audio file format is right") def main(config, args): WhisperInfer(config, args).run() if __name__ == "__main__": parser = default_argument_parser() # save asr result to parser.add_argument( "--result_file", type=str, help="path of save the asr result") parser.add_argument( "--audio_file", type=str, help="path of the input audio file") parser.add_argument( "--debug", type=distutils.util.strtobool, default=False, help="for debug.") args = parser.parse_args() config = CfgNode(new_allowed=True) if args.config: config.merge_from_file(args.config) if args.decode_cfg: decode_confs = CfgNode(new_allowed=True) decode_confs.merge_from_file(args.decode_cfg) config.decode = decode_confs if args.opts: config.merge_from_list(args.opts) config.freeze() main(config, args)