# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from typing import List import uvicorn from fastapi import FastAPI from prettytable import PrettyTable from ..executor import BaseExecutor from ..util import cli_server_register from ..util import stats_wrapper from paddlespeech.cli.log import logger from paddlespeech.server.engine.engine_pool import init_engine_pool from paddlespeech.server.restful.api import setup_router as setup_http_router from paddlespeech.server.utils.config import get_config from paddlespeech.server.ws.api import setup_router as setup_ws_router __all__ = ['ServerExecutor', 'ServerStatsExecutor'] app = FastAPI( title="PaddleSpeech Serving API", description="Api", version="0.0.1") @cli_server_register( name='paddlespeech_server.start', description='Start the service') class ServerExecutor(BaseExecutor): def __init__(self): super(ServerExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech_server.start', add_help=True) self.parser.add_argument( "--config_file", action="store", help="yaml file of the app", default=None, required=True) self.parser.add_argument( "--log_file", action="store", help="log file", default="./log/paddlespeech.log") def init(self, config) -> bool: """system initialization Args: config (CfgNode): config object Returns: bool: """ # init api api_list = list(engine.split("_")[0] for engine in config.engine_list) if config.protocol == "websocket": api_router = setup_ws_router(api_list) elif config.protocol == "http": api_router = setup_http_router(api_list) else: raise Exception("unsupported protocol") app.include_router(api_router) if not init_engine_pool(config): return False return True def execute(self, argv: List[str]) -> bool: args = self.parser.parse_args(argv) config = get_config(args.config_file) if self.init(config): uvicorn.run(app, host=config.host, port=config.port, debug=True) @stats_wrapper def __call__(self, config_file: str="./conf/application.yaml", log_file: str="./log/paddlespeech.log"): """ Python API to call an executor. """ config = get_config(config_file) if self.init(config): uvicorn.run(app, host=config.host, port=config.port, debug=True) @cli_server_register( name='paddlespeech_server.stats', description='Get the models supported by each speech task in the service.') class ServerStatsExecutor(): def __init__(self): super(ServerStatsExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech_server.stats', add_help=True) self.parser.add_argument( '--task', type=str, default=None, choices=['asr', 'tts', 'cls', 'text', 'vector'], help='Choose speech task.', required=True) self.task_choices = ['asr', 'tts', 'cls', 'text', 'vector'] self.model_name_format = { 'asr': 'Model-Language-Sample Rate', 'tts': 'Model-Language', 'cls': 'Model-Sample Rate', 'text': 'Model-Task-Language', 'vector': 'Model-Sample Rate' } def show_support_models(self, pretrained_models: dict): fields = self.model_name_format[self.task].split("-") table = PrettyTable(fields) for key in pretrained_models: table.add_row(key.split("-")) print(table) def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) self.task = parser_args.task if self.task not in self.task_choices: logger.error( "Please input correct speech task, choices = ['asr', 'tts']") return False elif self.task.lower() == 'asr': try: from paddlespeech.cli.asr.infer import pretrained_models logger.info( "Here is the table of ASR pretrained models supported in the service." ) self.show_support_models(pretrained_models) # show ASR static pretrained model from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models logger.info( "Here is the table of ASR static pretrained models supported in the service." ) self.show_support_models(pretrained_models) return True except BaseException: logger.error( "Failed to get the table of ASR pretrained models supported in the service." ) return False elif self.task.lower() == 'tts': try: from paddlespeech.cli.tts.infer import pretrained_models logger.info( "Here is the table of TTS pretrained models supported in the service." ) self.show_support_models(pretrained_models) # show TTS static pretrained model from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models logger.info( "Here is the table of TTS static pretrained models supported in the service." ) self.show_support_models(pretrained_models) return True except BaseException: logger.error( "Failed to get the table of TTS pretrained models supported in the service." ) return False elif self.task.lower() == 'cls': try: from paddlespeech.cli.cls.infer import pretrained_models logger.info( "Here is the table of CLS pretrained models supported in the service." ) self.show_support_models(pretrained_models) # show CLS static pretrained model from paddlespeech.server.engine.cls.paddleinference.cls_engine import pretrained_models logger.info( "Here is the table of CLS static pretrained models supported in the service." ) self.show_support_models(pretrained_models) return True except BaseException: logger.error( "Failed to get the table of CLS pretrained models supported in the service." ) return False elif self.task.lower() == 'text': try: from paddlespeech.cli.text.infer import pretrained_models logger.info( "Here is the table of Text pretrained models supported in the service." ) self.show_support_models(pretrained_models) return True except BaseException: logger.error( "Failed to get the table of Text pretrained models supported in the service." ) return False elif self.task.lower() == 'vector': try: from paddlespeech.cli.vector.infer import pretrained_models logger.info( "Here is the table of Vector pretrained models supported in the service." ) self.show_support_models(pretrained_models) return True except BaseException: logger.error( "Failed to get the table of Vector pretrained models supported in the service." ) return False else: logger.error( f"Failed to get the table of {self.task} pretrained models supported in the service." ) return False