# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lightweight Convolution Module.""" import numpy import paddle import paddle.nn.functional as F from paddle import nn from paddlespeech.t2s.modules.glu import GLU from paddlespeech.t2s.modules.masked_fill import masked_fill MIN_VALUE = float(numpy.finfo(numpy.float32).min) class LightweightConvolution(nn.Layer): """Lightweight Convolution layer. This implementation is based on https://github.com/pytorch/fairseq/tree/master/fairseq Parameters ---------- wshare : int the number of kernel of convolution n_feat : int the number of features dropout_rate : float dropout_rate kernel_size : int kernel size (length) use_kernel_mask : bool Use causal mask or not for convolution kernel use_bias : bool Use bias term or not. """ def __init__( self, wshare, n_feat, dropout_rate, kernel_size, use_kernel_mask=False, use_bias=False, ): """Construct Lightweight Convolution layer.""" super(LightweightConvolution, self).__init__() assert n_feat % wshare == 0 self.wshare = wshare self.use_kernel_mask = use_kernel_mask self.dropout_rate = dropout_rate self.kernel_size = kernel_size self.padding_size = int(kernel_size / 2) # linear -> GLU -> lightconv -> linear self.linear1 = nn.Linear(n_feat, n_feat * 2) self.linear2 = nn.Linear(n_feat, n_feat) self.act = GLU() # lightconv related self.uniform_ = nn.initializer.Uniform() self.weight = paddle.to_tensor( numpy.random.uniform(0, 1, size=[self.wshare, 1, kernel_size]), dtype="float32") self.uniform_(self.weight) self.weight = paddle.create_parameter( shape=self.weight.shape, dtype=str(self.weight.numpy().dtype), default_initializer=paddle.nn.initializer.Assign(self.weight)) self.use_bias = use_bias if self.use_bias: self.bias = paddle.Tensor(n_feat) self.bias = paddle.create_parameter( shape=self.bias.shape, dtype=str(self.bias.numpy().dtype), default_initializer=paddle.nn.initializer.Assign(self.bias)) # mask of kernel kernel_mask0 = paddle.zeros([self.wshare, int(kernel_size / 2)]) kernel_mask1 = paddle.ones([self.wshare, int(kernel_size / 2 + 1)]) self.kernel_mask = paddle.concat( (kernel_mask1, kernel_mask0), axis=-1).unsqueeze(1) def forward(self, query, key, value, mask): """Forward of 'Lightweight Convolution'. This function takes query, key and value but uses only query. This is just for compatibility with self-attention layer (attention.py) Parameters ---------- query : paddle.Tensor (batch, time1, d_model) input tensor key : paddle.Tensor (batch, time2, d_model) NOT USED value : paddle.Tensor (batch, time2, d_model) NOT USED mask : paddle.Tensor (batch, time1, time2) mask Return ---------- x : paddle.Tensor (batch, time1, d_model) ouput """ # linear -> GLU -> lightconv -> linear x = query B, T, C = x.shape H = self.wshare # first liner layer x = self.linear1(x) # GLU activation x = self.act(x) # lightconv # B x C x T x = x.transpose([0, 2, 1]).reshape([-1, H, T]) weight = F.dropout( self.weight, self.dropout_rate, training=self.training) if self.use_kernel_mask: weight = masked_fill(weight, self.kernel_mask == 0.0, float("-inf")) # weight = weight.masked_fill(self.kernel_mask == 0.0, float("-inf")) weight = F.softmax(weight, axis=-1) x = F.conv1d( x, weight, padding=self.padding_size, groups=self.wshare).reshape([B, C, T]) if self.use_bias: x = x + self.bias.reshape([1, -1, 1]) # B x T x C x = x.transpose([0, 2, 1]) if mask is not None and not self.use_kernel_mask: mask = mask.transpose([0, 2, 1]) # x = x.masked_fill(mask == 0, 0.0) x = masked_fill(x, mask == 0, 0.0) # second linear layer x = self.linear2(x) return x