# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ConvolutionModule definition.""" from typing import Optional from typing import Tuple import paddle from paddle import nn from typeguard import check_argument_types from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = ['ConvolutionModule'] class ConvolutionModule(nn.Layer): """ConvolutionModule in Conformer model.""" def __init__(self, channels: int, kernel_size: int=15, activation: nn.Layer=nn.ReLU(), norm: str="batch_norm", causal: bool=False, bias: bool=True): """Construct an ConvolutionModule object. Args: channels (int): The number of channels of conv layers. kernel_size (int): Kernel size of conv layers. activation (nn.Layer): Activation Layer. norm (str): Normalization type, 'batch_norm' or 'layer_norm' causal (bool): Whether use causal convolution or not bias (bool): Whether Conv with bias or not """ assert check_argument_types() super().__init__() self.pointwise_conv1 = nn.Conv1D( channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias_attr=None if bias else False, # None for True, using bias as default config ) # self.lorder is used to distinguish if it's a causal convolution, # if self.lorder > 0: # it's a causal convolution, the input will be padded with # `self.lorder` frames on the left in forward (causal conv impl). # else: it's a symmetrical convolution if causal: padding = 0 self.lorder = kernel_size - 1 else: # kernel_size should be an odd number for none causal convolution assert (kernel_size - 1) % 2 == 0 padding = (kernel_size - 1) // 2 self.lorder = 0 self.depthwise_conv = nn.Conv1D( channels, channels, kernel_size, stride=1, padding=padding, groups=channels, bias_attr=None if bias else False, # None for True, using bias as default config ) assert norm in ['batch_norm', 'layer_norm'] if norm == "batch_norm": self.use_layer_norm = False self.norm = nn.BatchNorm1D(channels) else: self.use_layer_norm = True self.norm = nn.LayerNorm(channels) self.pointwise_conv2 = nn.Conv1D( channels, channels, kernel_size=1, stride=1, padding=0, bias_attr=None if bias else False, # None for True, using bias as default config ) self.activation = activation def forward(self, x: paddle.Tensor, mask_pad: Optional[paddle.Tensor]=None, cache: Optional[paddle.Tensor]=None ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Compute convolution module. Args: x (paddle.Tensor): Input tensor (#batch, time, channels). mask_pad (paddle.Tensor): used for batch padding, (#batch, channels, time). cache (paddle.Tensor): left context cache, it is only used in causal convolution. (#batch, channels, time') Returns: paddle.Tensor: Output tensor (#batch, time, channels). paddle.Tensor: Output cache tensor (#batch, channels, time') """ # exchange the temporal dimension and the feature dimension x = x.transpose([0, 2, 1]) # [B, C, T] # mask batch padding if mask_pad is not None: x = x.masked_fill(mask_pad, 0.0) if self.lorder > 0: if cache is None: x = nn.functional.pad( x, [self.lorder, 0], 'constant', 0.0, data_format='NCL') else: assert cache.shape[0] == x.shape[0] # B assert cache.shape[1] == x.shape[1] # C x = paddle.concat((cache, x), axis=2) assert (x.shape[2] > self.lorder) new_cache = x[:, :, -self.lorder:] #[B, C, T] else: # It's better we just return None if no cache is requried, # However, for JIT export, here we just fake one tensor instead of # None. new_cache = paddle.zeros([1], dtype=x.dtype) # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channel, dim) x = nn.functional.glu(x, axis=1) # (batch, channel, dim) # 1D Depthwise Conv x = self.depthwise_conv(x) if self.use_layer_norm: x = x.transpose([0, 2, 1]) # [B, T, C] x = self.activation(self.norm(x)) if self.use_layer_norm: x = x.transpose([0, 2, 1]) # [B, C, T] x = self.pointwise_conv2(x) # mask batch padding if mask_pad is not None: x = x.masked_fill(mask_pad, 0.0) x = x.transpose([0, 2, 1]) # [B, T, C] return x, new_cache