# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from torchaudio(https://github.com/pytorch/audio) import math from typing import Tuple import paddle from paddle import Tensor from ..functional import create_dct from ..functional.window import get_window __all__ = [ 'spectrogram', 'fbank', 'mfcc', ] # window types HANNING = 'hann' HAMMING = 'hamming' POVEY = 'povey' RECTANGULAR = 'rect' BLACKMAN = 'blackman' def _get_epsilon(dtype): return paddle.to_tensor(1e-07, dtype=dtype) def _next_power_of_2(x: int) -> int: return 1 if x == 0 else 2**(x - 1).bit_length() def _get_strided(waveform: Tensor, window_size: int, window_shift: int, snip_edges: bool) -> Tensor: assert waveform.dim() == 1 num_samples = waveform.shape[0] if snip_edges: if num_samples < window_size: return paddle.empty((0, 0), dtype=waveform.dtype) else: m = 1 + (num_samples - window_size) // window_shift else: reversed_waveform = paddle.flip(waveform, [0]) m = (num_samples + (window_shift // 2)) // window_shift pad = window_size // 2 - window_shift // 2 pad_right = reversed_waveform if pad > 0: pad_left = reversed_waveform[-pad:] waveform = paddle.concat((pad_left, waveform, pad_right), axis=0) else: waveform = paddle.concat((waveform[-pad:], pad_right), axis=0) return paddle.signal.frame(waveform, window_size, window_shift)[:, :m].T def _feature_window_function( window_type: str, window_size: int, blackman_coeff: float, dtype: int, ) -> Tensor: if window_type == "hann": return get_window('hann', window_size, fftbins=False, dtype=dtype) elif window_type == "hamming": return get_window('hamming', window_size, fftbins=False, dtype=dtype) elif window_type == "povey": return get_window( 'hann', window_size, fftbins=False, dtype=dtype).pow(0.85) elif window_type == "rect": return paddle.ones([window_size], dtype=dtype) elif window_type == "blackman": a = 2 * math.pi / (window_size - 1) window_function = paddle.arange(window_size, dtype=dtype) return (blackman_coeff - 0.5 * paddle.cos(a * window_function) + (0.5 - blackman_coeff) * paddle.cos(2 * a * window_function) ).astype(dtype) else: raise Exception('Invalid window type ' + window_type) def _get_log_energy(strided_input: Tensor, epsilon: Tensor, energy_floor: float) -> Tensor: log_energy = paddle.maximum(strided_input.pow(2).sum(1), epsilon).log() if energy_floor == 0.0: return log_energy return paddle.maximum( log_energy, paddle.to_tensor(math.log(energy_floor), dtype=strided_input.dtype)) def _get_waveform_and_window_properties( waveform: Tensor, channel: int, sr: int, frame_shift: float, frame_length: float, round_to_power_of_two: bool, preemphasis_coefficient: float) -> Tuple[Tensor, int, int, int]: channel = max(channel, 0) assert channel < waveform.shape[0], ( 'Invalid channel {} for size {}'.format(channel, waveform.shape[0])) waveform = waveform[channel, :] # size (n) window_shift = int( sr * frame_shift * 0.001) # pass frame_shift and frame_length in milliseconds window_size = int(sr * frame_length * 0.001) padded_window_size = _next_power_of_2( window_size) if round_to_power_of_two else window_size assert 2 <= window_size <= len(waveform), ( 'choose a window size {} that is [2, {}]'.format(window_size, len(waveform))) assert 0 < window_shift, '`window_shift` must be greater than 0' assert padded_window_size % 2 == 0, 'the padded `window_size` must be divisible by two.' \ ' use `round_to_power_of_two` or change `frame_length`' assert 0. <= preemphasis_coefficient <= 1.0, '`preemphasis_coefficient` must be between [0,1]' assert sr > 0, '`sr` must be greater than zero' return waveform, window_shift, window_size, padded_window_size def _get_window(waveform: Tensor, padded_window_size: int, window_size: int, window_shift: int, window_type: str, blackman_coeff: float, snip_edges: bool, raw_energy: bool, energy_floor: float, dither: float, remove_dc_offset: bool, preemphasis_coefficient: float) -> Tuple[Tensor, Tensor]: dtype = waveform.dtype epsilon = _get_epsilon(dtype) # (m, window_size) strided_input = _get_strided(waveform, window_size, window_shift, snip_edges) if dither != 0.0: x = paddle.maximum(epsilon, paddle.rand(strided_input.shape, dtype=dtype)) rand_gauss = paddle.sqrt(-2 * x.log()) * paddle.cos(2 * math.pi * x) strided_input = strided_input + rand_gauss * dither if remove_dc_offset: row_means = paddle.mean(strided_input, axis=1).unsqueeze(1) # (m, 1) strided_input = strided_input - row_means if raw_energy: signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # (m) if preemphasis_coefficient != 0.0: offset_strided_input = paddle.nn.functional.pad( strided_input.unsqueeze(0), (1, 0), data_format='NCL', mode='replicate').squeeze(0) # (m, window_size + 1) strided_input = strided_input - preemphasis_coefficient * offset_strided_input[:, : -1] window_function = _feature_window_function( window_type, window_size, blackman_coeff, dtype).unsqueeze(0) # (1, window_size) strided_input = strided_input * window_function # (m, window_size) # (m, padded_window_size) if padded_window_size != window_size: padding_right = padded_window_size - window_size strided_input = paddle.nn.functional.pad( strided_input.unsqueeze(0), (0, padding_right), data_format='NCL', mode='constant', value=0).squeeze(0) if not raw_energy: signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m) return strided_input, signal_log_energy def _subtract_column_mean(tensor: Tensor, subtract_mean: bool) -> Tensor: if subtract_mean: col_means = paddle.mean(tensor, axis=0).unsqueeze(0) tensor = tensor - col_means return tensor def spectrogram(waveform: Tensor, blackman_coeff: float=0.42, channel: int=-1, dither: float=0.0, energy_floor: float=1.0, frame_length: float=25.0, frame_shift: float=10.0, preemphasis_coefficient: float=0.97, raw_energy: bool=True, remove_dc_offset: bool=True, round_to_power_of_two: bool=True, sr: int=16000, snip_edges: bool=True, subtract_mean: bool=False, window_type: str="povey") -> Tensor: """Compute and return a spectrogram from a waveform. The output is identical to Kaldi's. Args: waveform (Tensor): A waveform tensor with shape `(C, T)`. blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42. channel (int, optional): Select the channel of waveform. Defaults to -1. dither (float, optional): Dithering constant . Defaults to 0.0. energy_floor (float, optional): Floor on energy of the output Spectrogram. Defaults to 1.0. frame_length (float, optional): Frame length in milliseconds. Defaults to 25.0. frame_shift (float, optional): Shift between adjacent frames in milliseconds. Defaults to 10.0. preemphasis_coefficient (float, optional): Preemphasis coefficient for input waveform. Defaults to 0.97. raw_energy (bool, optional): Whether to compute before preemphasis and windowing. Defaults to True. remove_dc_offset (bool, optional): Whether to subtract mean from waveform on frames. Defaults to True. round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input to FFT. Defaults to True. sr (int, optional): Sample rate of input waveform. Defaults to 16000. snip_edges (bool, optional): Drop samples in the end of waveform that cann't fit a singal frame when it is set True. Otherwise performs reflect padding to the end of waveform. Defaults to True. subtract_mean (bool, optional): Whether to subtract mean of feature files. Defaults to False. window_type (str, optional): Choose type of window for FFT computation. Defaults to "povey". Returns: Tensor: A spectrogram tensor with shape `(m, padded_window_size // 2 + 1)` where m is the number of frames depends on frame_length and frame_shift. """ dtype = waveform.dtype epsilon = _get_epsilon(dtype) waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties( waveform, channel, sr, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient) strided_input, signal_log_energy = _get_window( waveform, padded_window_size, window_size, window_shift, window_type, blackman_coeff, snip_edges, raw_energy, energy_floor, dither, remove_dc_offset, preemphasis_coefficient) # (m, padded_window_size // 2 + 1, 2) fft = paddle.fft.rfft(strided_input) power_spectrum = paddle.maximum( fft.abs().pow(2.), epsilon).log() # (m, padded_window_size // 2 + 1) power_spectrum[:, 0] = signal_log_energy power_spectrum = _subtract_column_mean(power_spectrum, subtract_mean) return power_spectrum def _inverse_mel_scale_scalar(mel_freq: float) -> float: return 700.0 * (math.exp(mel_freq / 1127.0) - 1.0) def _inverse_mel_scale(mel_freq: Tensor) -> Tensor: return 700.0 * ((mel_freq / 1127.0).exp() - 1.0) def _mel_scale_scalar(freq: float) -> float: return 1127.0 * math.log(1.0 + freq / 700.0) def _mel_scale(freq: Tensor) -> Tensor: return 1127.0 * (1.0 + freq / 700.0).log() def _vtln_warp_freq(vtln_low_cutoff: float, vtln_high_cutoff: float, low_freq: float, high_freq: float, vtln_warp_factor: float, freq: Tensor) -> Tensor: assert vtln_low_cutoff > low_freq, 'be sure to set the vtln_low option higher than low_freq' assert vtln_high_cutoff < high_freq, 'be sure to set the vtln_high option lower than high_freq [or negative]' l = vtln_low_cutoff * max(1.0, vtln_warp_factor) h = vtln_high_cutoff * min(1.0, vtln_warp_factor) scale = 1.0 / vtln_warp_factor Fl = scale * l Fh = scale * h assert l > low_freq and h < high_freq scale_left = (Fl - low_freq) / (l - low_freq) scale_right = (high_freq - Fh) / (high_freq - h) res = paddle.empty_like(freq) outside_low_high_freq = paddle.less_than(freq, paddle.to_tensor(low_freq)) \ | paddle.greater_than(freq, paddle.to_tensor(high_freq)) before_l = paddle.less_than(freq, paddle.to_tensor(l)) before_h = paddle.less_than(freq, paddle.to_tensor(h)) after_h = paddle.greater_equal(freq, paddle.to_tensor(h)) res[after_h] = high_freq + scale_right * (freq[after_h] - high_freq) res[before_h] = scale * freq[before_h] res[before_l] = low_freq + scale_left * (freq[before_l] - low_freq) res[outside_low_high_freq] = freq[outside_low_high_freq] return res def _vtln_warp_mel_freq(vtln_low_cutoff: float, vtln_high_cutoff: float, low_freq, high_freq: float, vtln_warp_factor: float, mel_freq: Tensor) -> Tensor: return _mel_scale( _vtln_warp_freq(vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, vtln_warp_factor, _inverse_mel_scale(mel_freq))) def _get_mel_banks(num_bins: int, window_length_padded: int, sample_freq: float, low_freq: float, high_freq: float, vtln_low: float, vtln_high: float, vtln_warp_factor: float) -> Tuple[Tensor, Tensor]: assert num_bins > 3, 'Must have at least 3 mel bins' assert window_length_padded % 2 == 0 num_fft_bins = window_length_padded / 2 nyquist = 0.5 * sample_freq if high_freq <= 0.0: high_freq += nyquist assert (0.0 <= low_freq < nyquist) and (0.0 < high_freq <= nyquist) and (low_freq < high_freq), \ ('Bad values in options: low-freq {} and high-freq {} vs. nyquist {}'.format(low_freq, high_freq, nyquist)) fft_bin_width = sample_freq / window_length_padded mel_low_freq = _mel_scale_scalar(low_freq) mel_high_freq = _mel_scale_scalar(high_freq) mel_freq_delta = (mel_high_freq - mel_low_freq) / (num_bins + 1) if vtln_high < 0.0: vtln_high += nyquist assert vtln_warp_factor == 1.0 or ((low_freq < vtln_low < high_freq) and (0.0 < vtln_high < high_freq) and (vtln_low < vtln_high)), \ ('Bad values in options: vtln-low {} and vtln-high {}, versus ' 'low-freq {} and high-freq {}'.format(vtln_low, vtln_high, low_freq, high_freq)) bin = paddle.arange(num_bins, dtype=paddle.float32).unsqueeze(1) # left_mel = mel_low_freq + bin * mel_freq_delta # (num_bins, 1) # center_mel = mel_low_freq + (bin + 1.0) * mel_freq_delta # (num_bins, 1) # right_mel = mel_low_freq + (bin + 2.0) * mel_freq_delta # (num_bins, 1) left_mel = mel_low_freq + bin * mel_freq_delta # (num_bins, 1) center_mel = left_mel + mel_freq_delta right_mel = center_mel + mel_freq_delta if vtln_warp_factor != 1.0: left_mel = _vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, left_mel) center_mel = _vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, center_mel) right_mel = _vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, right_mel) center_freqs = _inverse_mel_scale(center_mel) # (num_bins) # (1, num_fft_bins) mel = _mel_scale(fft_bin_width * paddle.arange(num_fft_bins, dtype=paddle.float32)).unsqueeze(0) # (num_bins, num_fft_bins) up_slope = (mel - left_mel) / (center_mel - left_mel) down_slope = (right_mel - mel) / (right_mel - center_mel) if vtln_warp_factor == 1.0: bins = paddle.maximum( paddle.zeros([1]), paddle.minimum(up_slope, down_slope)) else: bins = paddle.zeros_like(up_slope) up_idx = paddle.greater_than(mel, left_mel) & paddle.less_than( mel, center_mel) down_idx = paddle.greater_than(mel, center_mel) & paddle.less_than( mel, right_mel) bins[up_idx] = up_slope[up_idx] bins[down_idx] = down_slope[down_idx] return bins, center_freqs def fbank(waveform: Tensor, blackman_coeff: float=0.42, channel: int=-1, dither: float=0.0, energy_floor: float=1.0, frame_length: float=25.0, frame_shift: float=10.0, high_freq: float=0.0, htk_compat: bool=False, low_freq: float=20.0, n_mels: int=23, preemphasis_coefficient: float=0.97, raw_energy: bool=True, remove_dc_offset: bool=True, round_to_power_of_two: bool=True, sr: int=16000, snip_edges: bool=True, subtract_mean: bool=False, use_energy: bool=False, use_log_fbank: bool=True, use_power: bool=True, vtln_high: float=-500.0, vtln_low: float=100.0, vtln_warp: float=1.0, window_type: str="povey") -> Tensor: """Compute and return filter banks from a waveform. The output is identical to Kaldi's. Args: waveform (Tensor): A waveform tensor with shape `(C, T)`. `C` is in the range [0,1]. blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42. channel (int, optional): Select the channel of waveform. Defaults to -1. dither (float, optional): Dithering constant . Defaults to 0.0. energy_floor (float, optional): Floor on energy of the output Spectrogram. Defaults to 1.0. frame_length (float, optional): Frame length in milliseconds. Defaults to 25.0. frame_shift (float, optional): Shift between adjacent frames in milliseconds. Defaults to 10.0. high_freq (float, optional): The upper cut-off frequency. Defaults to 0.0. htk_compat (bool, optional): Put energy to the last when it is set True. Defaults to False. low_freq (float, optional): The lower cut-off frequency. Defaults to 20.0. n_mels (int, optional): Number of output mel bins. Defaults to 23. preemphasis_coefficient (float, optional): Preemphasis coefficient for input waveform. Defaults to 0.97. raw_energy (bool, optional): Whether to compute before preemphasis and windowing. Defaults to True. remove_dc_offset (bool, optional): Whether to subtract mean from waveform on frames. Defaults to True. round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input to FFT. Defaults to True. sr (int, optional): Sample rate of input waveform. Defaults to 16000. snip_edges (bool, optional): Drop samples in the end of waveform that cann't fit a singal frame when it is set True. Otherwise performs reflect padding to the end of waveform. Defaults to True. subtract_mean (bool, optional): Whether to subtract mean of feature files. Defaults to False. use_energy (bool, optional): Add an dimension with energy of spectrogram to the output. Defaults to False. use_log_fbank (bool, optional): Return log fbank when it is set True. Defaults to True. use_power (bool, optional): Whether to use power instead of magnitude. Defaults to True. vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function. Defaults to -500.0. vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function. Defaults to 100.0. vtln_warp (float, optional): Vtln warp factor. Defaults to 1.0. window_type (str, optional): Choose type of window for FFT computation. Defaults to "povey". Returns: Tensor: A filter banks tensor with shape `(m, n_mels)`. """ dtype = waveform.dtype waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties( waveform, channel, sr, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient) strided_input, signal_log_energy = _get_window( waveform, padded_window_size, window_size, window_shift, window_type, blackman_coeff, snip_edges, raw_energy, energy_floor, dither, remove_dc_offset, preemphasis_coefficient) # (m, padded_window_size // 2 + 1) spectrum = paddle.fft.rfft(strided_input).abs() if use_power: spectrum = spectrum.pow(2.) # (n_mels, padded_window_size // 2) mel_energies, _ = _get_mel_banks(n_mels, padded_window_size, sr, low_freq, high_freq, vtln_low, vtln_high, vtln_warp) # mel_energies = mel_energies.astype(dtype) assert mel_energies.dtype == dtype # (n_mels, padded_window_size // 2 + 1) mel_energies = paddle.nn.functional.pad( mel_energies.unsqueeze(0), (0, 1), data_format='NCL', mode='constant', value=0).squeeze(0) # (m, n_mels) mel_energies = paddle.mm(spectrum, mel_energies.T) if use_log_fbank: mel_energies = paddle.maximum(mel_energies, _get_epsilon(dtype)).log() if use_energy: signal_log_energy = signal_log_energy.unsqueeze(1) if htk_compat: mel_energies = paddle.concat( (mel_energies, signal_log_energy), axis=1) else: mel_energies = paddle.concat( (signal_log_energy, mel_energies), axis=1) # (m, n_mels + 1) mel_energies = _subtract_column_mean(mel_energies, subtract_mean) return mel_energies def _get_dct_matrix(n_mfcc: int, n_mels: int) -> Tensor: dct_matrix = create_dct(n_mels, n_mels, 'ortho') dct_matrix[:, 0] = math.sqrt(1 / float(n_mels)) dct_matrix = dct_matrix[:, :n_mfcc] # (n_mels, n_mfcc) return dct_matrix def _get_lifter_coeffs(n_mfcc: int, cepstral_lifter: float) -> Tensor: i = paddle.arange(n_mfcc) return 1.0 + 0.5 * cepstral_lifter * paddle.sin(math.pi * i / cepstral_lifter) def mfcc(waveform: Tensor, blackman_coeff: float=0.42, cepstral_lifter: float=22.0, channel: int=-1, dither: float=0.0, energy_floor: float=1.0, frame_length: float=25.0, frame_shift: float=10.0, high_freq: float=0.0, htk_compat: bool=False, low_freq: float=20.0, n_mfcc: int=13, n_mels: int=23, preemphasis_coefficient: float=0.97, raw_energy: bool=True, remove_dc_offset: bool=True, round_to_power_of_two: bool=True, sr: int=16000, snip_edges: bool=True, subtract_mean: bool=False, use_energy: bool=False, vtln_high: float=-500.0, vtln_low: float=100.0, vtln_warp: float=1.0, window_type: str="povey") -> Tensor: """Compute and return mel frequency cepstral coefficients from a waveform. The output is identical to Kaldi's. Args: waveform (Tensor): A waveform tensor with shape `(C, T)`. blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42. cepstral_lifter (float, optional): Scaling of output mfccs. Defaults to 22.0. channel (int, optional): Select the channel of waveform. Defaults to -1. dither (float, optional): Dithering constant . Defaults to 0.0. energy_floor (float, optional): Floor on energy of the output Spectrogram. Defaults to 1.0. frame_length (float, optional): Frame length in milliseconds. Defaults to 25.0. frame_shift (float, optional): Shift between adjacent frames in milliseconds. Defaults to 10.0. high_freq (float, optional): The upper cut-off frequency. Defaults to 0.0. htk_compat (bool, optional): Put energy to the last when it is set True. Defaults to False. low_freq (float, optional): The lower cut-off frequency. Defaults to 20.0. n_mfcc (int, optional): Number of cepstra in MFCC. Defaults to 13. n_mels (int, optional): Number of output mel bins. Defaults to 23. preemphasis_coefficient (float, optional): Preemphasis coefficient for input waveform. Defaults to 0.97. raw_energy (bool, optional): Whether to compute before preemphasis and windowing. Defaults to True. remove_dc_offset (bool, optional): Whether to subtract mean from waveform on frames. Defaults to True. round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input to FFT. Defaults to True. sr (int, optional): Sample rate of input waveform. Defaults to 16000. snip_edges (bool, optional): Drop samples in the end of waveform that cann't fit a singal frame when it is set True. Otherwise performs reflect padding to the end of waveform. Defaults to True. subtract_mean (bool, optional): Whether to subtract mean of feature files. Defaults to False. use_energy (bool, optional): Add an dimension with energy of spectrogram to the output. Defaults to False. vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function. Defaults to -500.0. vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function. Defaults to 100.0. vtln_warp (float, optional): Vtln warp factor. Defaults to 1.0. window_type (str, optional): Choose type of window for FFT computation. Defaults to POVEY. Returns: Tensor: A mel frequency cepstral coefficients tensor with shape `(m, n_mfcc)`. """ assert n_mfcc <= n_mels, 'n_mfcc cannot be larger than n_mels: %d vs %d' % ( n_mfcc, n_mels) dtype = waveform.dtype # (m, n_mels + use_energy) feature = fbank( waveform=waveform, blackman_coeff=blackman_coeff, channel=channel, dither=dither, energy_floor=energy_floor, frame_length=frame_length, frame_shift=frame_shift, high_freq=high_freq, htk_compat=htk_compat, low_freq=low_freq, n_mels=n_mels, preemphasis_coefficient=preemphasis_coefficient, raw_energy=raw_energy, remove_dc_offset=remove_dc_offset, round_to_power_of_two=round_to_power_of_two, sr=sr, snip_edges=snip_edges, subtract_mean=False, use_energy=use_energy, use_log_fbank=True, use_power=True, vtln_high=vtln_high, vtln_low=vtln_low, vtln_warp=vtln_warp, window_type=window_type) if use_energy: # (m) signal_log_energy = feature[:, n_mels if htk_compat else 0] mel_offset = int(not htk_compat) feature = feature[:, mel_offset:(n_mels + mel_offset)] # (n_mels, n_mfcc) dct_matrix = _get_dct_matrix(n_mfcc, n_mels).astype(dtype=dtype) # (m, n_mfcc) feature = feature.matmul(dct_matrix) if cepstral_lifter != 0.0: # (1, n_mfcc) lifter_coeffs = _get_lifter_coeffs(n_mfcc, cepstral_lifter).unsqueeze(0) feature *= lifter_coeffs.astype(dtype=dtype) if use_energy: feature[:, 0] = signal_log_energy if htk_compat: energy = feature[:, 0].unsqueeze(1) # (m, 1) feature = feature[:, 1:] # (m, n_mfcc - 1) if not use_energy: energy *= math.sqrt(2) feature = paddle.concat((feature, energy), axis=1) feature = _subtract_column_mean(feature, subtract_mean) return feature