"""Inferer for DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import gzip import distutils.util import paddle.v2 as paddle from data_utils.data import DataGenerator from model import deep_speech2 from decoder import ctc_decode import utils parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--num_samples", default=10, type=int, help="Number of samples for inference. (default: %(default)s)") parser.add_argument( "--num_conv_layers", default=2, type=int, help="Convolution layer number. (default: %(default)s)") parser.add_argument( "--num_rnn_layers", default=3, type=int, help="RNN layer number. (default: %(default)s)") parser.add_argument( "--rnn_layer_size", default=512, type=int, help="RNN layer cell number. (default: %(default)s)") parser.add_argument( "--use_gpu", default=True, type=distutils.util.strtobool, help="Use gpu or not. (default: %(default)s)") parser.add_argument( "--mean_std_filepath", default='mean_std.npz', type=str, help="Manifest path for normalizer. (default: %(default)s)") parser.add_argument( "--decode_manifest_path", default='datasets/manifest.test', type=str, help="Manifest path for decoding. (default: %(default)s)") parser.add_argument( "--model_filepath", default='./params.tar.gz', type=str, help="Model filepath. (default: %(default)s)") parser.add_argument( "--vocab_filepath", default='datasets/vocab/eng_vocab.txt', type=str, help="Vocabulary filepath. (default: %(default)s)") args = parser.parse_args() def infer(): """Max-ctc-decoding for DeepSpeech2.""" # initialize data generator data_generator = DataGenerator( vocab_filepath=args.vocab_filepath, mean_std_filepath=args.mean_std_filepath, augmentation_config='{}') # create network config # paddle.data_type.dense_array is used for variable batch input. # The size 161 * 161 is only an placeholder value and the real shape # of input batch data will be induced during training. audio_data = paddle.layer.data( name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161)) text_data = paddle.layer.data( name="transcript_text", type=paddle.data_type.integer_value_sequence(data_generator.vocab_size)) output_probs = deep_speech2( audio_data=audio_data, text_data=text_data, dict_size=data_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_size=args.rnn_layer_size, is_inference=True) # load parameters parameters = paddle.parameters.Parameters.from_tar( gzip.open(args.model_filepath)) # prepare infer data batch_reader = data_generator.batch_reader_creator( manifest_path=args.decode_manifest_path, batch_size=args.num_samples, sortagrad=False, shuffle_method=None) infer_data = batch_reader().next() # run inference infer_results = paddle.infer( output_layer=output_probs, parameters=parameters, input=infer_data) num_steps = len(infer_results) // len(infer_data) probs_split = [ infer_results[i * num_steps:(i + 1) * num_steps] for i in xrange(len(infer_data)) ] # decode and print for i, probs in enumerate(probs_split): output_transcription = ctc_decode( probs_seq=probs, vocabulary=data_generator.vocab_list, method="best_path") target_transcription = ''.join( [data_generator.vocab_list[index] for index in infer_data[i][1]]) print("Target Transcription: %s \nOutput Transcription: %s \n" % (target_transcription, output_transcription)) def main(): utils.print_arguments(args) paddle.init(use_gpu=args.use_gpu, trainer_count=1) infer() if __name__ == '__main__': main()