# -*- coding: utf-8 -*- """HiFi-GAN Modules. This code is based on https://github.com/jik876/hifi-gan. """ import copy from typing import Any from typing import Dict from typing import List import paddle import paddle.nn.functional as F from paddle import nn from paddlespeech.t2s.modules.activation import get_activation from paddlespeech.t2s.modules.nets_utils import initialize from paddlespeech.t2s.modules.residual_block import HiFiGANResidualBlock as ResidualBlock class HiFiGANGenerator(nn.Layer): """HiFiGAN generator module.""" def __init__( self, in_channels: int=80, out_channels: int=1, channels: int=512, kernel_size: int=7, upsample_scales: List[int]=(8, 8, 2, 2), upsample_kernel_sizes: List[int]=(16, 16, 4, 4), resblock_kernel_sizes: List[int]=(3, 7, 11), resblock_dilations: List[List[int]]=[(1, 3, 5), (1, 3, 5), (1, 3, 5)], use_additional_convs: bool=True, bias: bool=True, nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.1}, use_weight_norm: bool=True, init_type: str="xavier_uniform", ): """Initialize HiFiGANGenerator module. Parameters ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. channels : int Number of hidden representation channels. kernel_size : int Kernel size of initial and final conv layer. upsample_scales : list List of upsampling scales. upsample_kernel_sizes : list List of kernel sizes for upsampling layers. resblock_kernel_sizes : list List of kernel sizes for residual blocks. resblock_dilations : list List of dilation list for residual blocks. use_additional_convs : bool Whether to use additional conv layers in residual blocks. bias : bool Whether to add bias parameter in convolution layers. nonlinear_activation : str Activation function module name. nonlinear_activation_params : dict Hyperparameters for activation function. use_weight_norm : bool Whether to use weight norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() # initialize parameters initialize(self, init_type) # check hyperparameters are valid assert kernel_size % 2 == 1, "Kernel size must be odd number." assert len(upsample_scales) == len(upsample_kernel_sizes) assert len(resblock_dilations) == len(resblock_kernel_sizes) # define modules self.num_upsamples = len(upsample_kernel_sizes) self.num_blocks = len(resblock_kernel_sizes) self.input_conv = nn.Conv1D( in_channels, channels, kernel_size, 1, padding=(kernel_size - 1) // 2, ) self.upsamples = nn.LayerList() self.blocks = nn.LayerList() for i in range(len(upsample_kernel_sizes)): assert upsample_kernel_sizes[i] == 2 * upsample_scales[i] self.upsamples.append( nn.Sequential( get_activation(nonlinear_activation, ** nonlinear_activation_params), nn.Conv1DTranspose( channels // (2**i), channels // (2**(i + 1)), upsample_kernel_sizes[i], upsample_scales[i], padding=upsample_scales[i] // 2 + upsample_scales[i] % 2, output_padding=upsample_scales[i] % 2, ), )) for j in range(len(resblock_kernel_sizes)): self.blocks.append( ResidualBlock( kernel_size=resblock_kernel_sizes[j], channels=channels // (2**(i + 1)), dilations=resblock_dilations[j], bias=bias, use_additional_convs=use_additional_convs, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, )) self.output_conv = nn.Sequential( nn.LeakyReLU(), nn.Conv1D( channels // (2**(i + 1)), out_channels, kernel_size, 1, padding=(kernel_size - 1) // 2, ), nn.Tanh(), ) nn.initializer.set_global_initializer(None) # apply weight norm if use_weight_norm: self.apply_weight_norm() # reset parameters self.reset_parameters() def forward(self, c): """Calculate forward propagation. Parameters ---------- c : Tensor Input tensor (B, in_channels, T). Returns ---------- Tensor Output tensor (B, out_channels, T). """ c = self.input_conv(c) for i in range(self.num_upsamples): c = self.upsamples[i](c) # initialize cs = 0.0 for j in range(self.num_blocks): cs += self.blocks[i * self.num_blocks + j](c) c = cs / self.num_blocks c = self.output_conv(c) return c def reset_parameters(self): """Reset parameters. This initialization follows official implementation manner. https://github.com/jik876/hifi-gan/blob/master/models.py """ # 定义参数为float的正态分布。 dist = paddle.distribution.Normal(loc=0.0, scale=0.01) def _reset_parameters(m): if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose): w = dist.sample(m.weight.shape) m.weight.set_value(w) self.apply(_reset_parameters) def apply_weight_norm(self): """Recursively apply weight normalization to all the Convolution layers in the sublayers. """ def _apply_weight_norm(layer): if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)): nn.utils.weight_norm(layer) self.apply(_apply_weight_norm) def remove_weight_norm(self): """Recursively remove weight normalization from all the Convolution layers in the sublayers. """ def _remove_weight_norm(layer): try: nn.utils.remove_weight_norm(layer) except ValueError: pass self.apply(_remove_weight_norm) def inference(self, c): """Perform inference. Parameters ---------- c : Tensor Input tensor (T, in_channels). normalize_before (bool): Whether to perform normalization. Returns ---------- Tensor Output tensor (T ** prod(upsample_scales), out_channels). """ c = self.forward(c.transpose([1, 0]).unsqueeze(0)) return c.squeeze(0).transpose([1, 0]) class HiFiGANPeriodDiscriminator(nn.Layer): """HiFiGAN period discriminator module.""" def __init__( self, in_channels: int=1, out_channels: int=1, period: int=3, kernel_sizes: List[int]=[5, 3], channels: int=32, downsample_scales: List[int]=[3, 3, 3, 3, 1], max_downsample_channels: int=1024, bias: bool=True, nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.1}, use_weight_norm: bool=True, use_spectral_norm: bool=False, init_type: str="xavier_uniform", ): """Initialize HiFiGANPeriodDiscriminator module. Parameters ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. period : int Period. kernel_sizes : list Kernel sizes of initial conv layers and the final conv layer. channels : int Number of initial channels. downsample_scales : list List of downsampling scales. max_downsample_channels : int Number of maximum downsampling channels. use_additional_convs : bool Whether to use additional conv layers in residual blocks. bias : bool Whether to add bias parameter in convolution layers. nonlinear_activation : str Activation function module name. nonlinear_activation_params : dict Hyperparameters for activation function. use_weight_norm : bool Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_spectral_norm : bool Whether to use spectral norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() # initialize parameters initialize(self, init_type) assert len(kernel_sizes) == 2 assert kernel_sizes[0] % 2 == 1, "Kernel size must be odd number." assert kernel_sizes[1] % 2 == 1, "Kernel size must be odd number." self.period = period self.convs = nn.LayerList() in_chs = in_channels out_chs = channels for downsample_scale in downsample_scales: self.convs.append( nn.Sequential( nn.Conv2D( in_chs, out_chs, (kernel_sizes[0], 1), (downsample_scale, 1), padding=((kernel_sizes[0] - 1) // 2, 0), ), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) in_chs = out_chs # NOTE: Use downsample_scale + 1? out_chs = min(out_chs * 4, max_downsample_channels) self.output_conv = nn.Conv2D( out_chs, out_channels, (kernel_sizes[1] - 1, 1), 1, padding=((kernel_sizes[1] - 1) // 2, 0), ) if use_weight_norm and use_spectral_norm: raise ValueError("Either use use_weight_norm or use_spectral_norm.") # apply weight norm if use_weight_norm: self.apply_weight_norm() # apply spectral norm if use_spectral_norm: self.apply_spectral_norm() def forward(self, x): """Calculate forward propagation. Parameters ---------- c : Tensor Input tensor (B, in_channels, T). Returns ---------- list List of each layer's tensors. """ # transform 1d to 2d -> (B, C, T/P, P) b, c, t = paddle.shape(x) if t % self.period != 0: n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect", data_format="NCL") t += n_pad x = x.reshape([b, c, t // self.period, self.period]) # forward conv outs = [] for layer in self.convs: x = layer(x) outs += [x] x = self.output_conv(x) x = paddle.flatten(x, 1, -1) outs += [x] return outs def apply_weight_norm(self): """Recursively apply weight normalization to all the Convolution layers in the sublayers. """ def _apply_weight_norm(layer): if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)): nn.utils.weight_norm(layer) self.apply(_apply_weight_norm) def apply_spectral_norm(self): """Apply spectral normalization module from all of the layers.""" def _apply_spectral_norm(m): if isinstance(m, nn.Conv2D): nn.utils.spectral_norm(m) self.apply(_apply_spectral_norm) class HiFiGANMultiPeriodDiscriminator(nn.Layer): """HiFiGAN multi-period discriminator module.""" def __init__( self, periods: List[int]=[2, 3, 5, 7, 11], discriminator_params: Dict[str, Any]={ "in_channels": 1, "out_channels": 1, "kernel_sizes": [5, 3], "channels": 32, "downsample_scales": [3, 3, 3, 3, 1], "max_downsample_channels": 1024, "bias": True, "nonlinear_activation": "leakyrelu", "nonlinear_activation_params": { "negative_slope": 0.1 }, "use_weight_norm": True, "use_spectral_norm": False, }, init_type: str="xavier_uniform", ): """Initialize HiFiGANMultiPeriodDiscriminator module. Parameters ---------- periods : list List of periods. discriminator_params : dict Parameters for hifi-gan period discriminator module. The period parameter will be overwritten. """ super().__init__() # initialize parameters initialize(self, init_type) self.discriminators = nn.LayerList() for period in periods: params = copy.deepcopy(discriminator_params) params["period"] = period self.discriminators.append(HiFiGANPeriodDiscriminator(**params)) def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Input noise signal (B, 1, T). Returns ---------- List List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] for f in self.discriminators: outs += [f(x)] return outs class HiFiGANScaleDiscriminator(nn.Layer): """HiFi-GAN scale discriminator module.""" def __init__( self, in_channels: int=1, out_channels: int=1, kernel_sizes: List[int]=[15, 41, 5, 3], channels: int=128, max_downsample_channels: int=1024, max_groups: int=16, bias: bool=True, downsample_scales: List[int]=[2, 2, 4, 4, 1], nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.1}, use_weight_norm: bool=True, use_spectral_norm: bool=False, init_type: str="xavier_uniform", ): """Initilize HiFiGAN scale discriminator module. Parameters ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_sizes : list List of four kernel sizes. The first will be used for the first conv layer, and the second is for downsampling part, and the remaining two are for output layers. channels : int Initial number of channels for conv layer. max_downsample_channels : int Maximum number of channels for downsampling layers. bias : bool Whether to add bias parameter in convolution layers. downsample_scales : list List of downsampling scales. nonlinear_activation : str Activation function module name. nonlinear_activation_params : dict Hyperparameters for activation function. use_weight_norm : bool Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_spectral_norm : bool Whether to use spectral norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() # initialize parameters initialize(self, init_type) self.layers = nn.LayerList() # check kernel size is valid assert len(kernel_sizes) == 4 for ks in kernel_sizes: assert ks % 2 == 1 # add first layer self.layers.append( nn.Sequential( nn.Conv1D( in_channels, channels, # NOTE: Use always the same kernel size kernel_sizes[0], bias_attr=bias, padding=(kernel_sizes[0] - 1) // 2, ), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) # add downsample layers in_chs = channels out_chs = channels # NOTE(kan-bayashi): Remove hard coding? groups = 4 for downsample_scale in downsample_scales: self.layers.append( nn.Sequential( nn.Conv1D( in_chs, out_chs, kernel_size=kernel_sizes[1], stride=downsample_scale, padding=(kernel_sizes[1] - 1) // 2, groups=groups, bias_attr=bias, ), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) in_chs = out_chs # NOTE: Remove hard coding? out_chs = min(in_chs * 2, max_downsample_channels) # NOTE: Remove hard coding? groups = min(groups * 4, max_groups) # add final layers out_chs = min(in_chs * 2, max_downsample_channels) self.layers.append( nn.Sequential( nn.Conv1D( in_chs, out_chs, kernel_size=kernel_sizes[2], stride=1, padding=(kernel_sizes[2] - 1) // 2, bias_attr=bias, ), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) self.layers.append( nn.Conv1D( out_chs, out_channels, kernel_size=kernel_sizes[3], stride=1, padding=(kernel_sizes[3] - 1) // 2, bias_attr=bias, ), ) if use_weight_norm and use_spectral_norm: raise ValueError("Either use use_weight_norm or use_spectral_norm.") # apply weight norm if use_weight_norm: self.apply_weight_norm() # apply spectral norm if use_spectral_norm: self.apply_spectral_norm() def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Input noise signal (B, 1, T). Returns ---------- List List of output tensors of each layer. """ outs = [] for f in self.layers: x = f(x) outs += [x] return outs def apply_weight_norm(self): """Recursively apply weight normalization to all the Convolution layers in the sublayers. """ def _apply_weight_norm(layer): if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)): nn.utils.weight_norm(layer) self.apply(_apply_weight_norm) def apply_spectral_norm(self): """Apply spectral normalization module from all of the layers.""" def _apply_spectral_norm(m): if isinstance(m, nn.Conv2D): nn.utils.spectral_norm(m) self.apply(_apply_spectral_norm) class HiFiGANMultiScaleDiscriminator(nn.Layer): """HiFi-GAN multi-scale discriminator module.""" def __init__( self, scales: int=3, downsample_pooling: str="AvgPool1D", # follow the official implementation setting downsample_pooling_params: Dict[str, Any]={ "kernel_size": 4, "stride": 2, "padding": 2, }, discriminator_params: Dict[str, Any]={ "in_channels": 1, "out_channels": 1, "kernel_sizes": [15, 41, 5, 3], "channels": 128, "max_downsample_channels": 1024, "max_groups": 16, "bias": True, "downsample_scales": [2, 2, 4, 4, 1], "nonlinear_activation": "leakyrelu", "nonlinear_activation_params": { "negative_slope": 0.1 }, }, follow_official_norm: bool=False, init_type: str="xavier_uniform", ): """Initilize HiFiGAN multi-scale discriminator module. Parameters ---------- scales : int Number of multi-scales. downsample_pooling : str Pooling module name for downsampling of the inputs. downsample_pooling_params : dict Parameters for the above pooling module. discriminator_params : dict Parameters for hifi-gan scale discriminator module. follow_official_norm : bool Whether to follow the norm setting of the official implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm. """ super().__init__() # initialize parameters initialize(self, init_type) self.discriminators = nn.LayerList() # add discriminators for i in range(scales): params = copy.deepcopy(discriminator_params) if follow_official_norm: if i == 0: params["use_weight_norm"] = False params["use_spectral_norm"] = True else: params["use_weight_norm"] = True params["use_spectral_norm"] = False self.discriminators.append(HiFiGANScaleDiscriminator(**params)) self.pooling = getattr(nn, downsample_pooling)( **downsample_pooling_params) def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Input noise signal (B, 1, T). Returns ---------- List List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] for f in self.discriminators: outs += [f(x)] x = self.pooling(x) return outs class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer): """HiFi-GAN multi-scale + multi-period discriminator module.""" def __init__( self, # Multi-scale discriminator related scales: int=3, scale_downsample_pooling: str="AvgPool1D", scale_downsample_pooling_params: Dict[str, Any]={ "kernel_size": 4, "stride": 2, "padding": 2, }, scale_discriminator_params: Dict[str, Any]={ "in_channels": 1, "out_channels": 1, "kernel_sizes": [15, 41, 5, 3], "channels": 128, "max_downsample_channels": 1024, "max_groups": 16, "bias": True, "downsample_scales": [2, 2, 4, 4, 1], "nonlinear_activation": "leakyrelu", "nonlinear_activation_params": { "negative_slope": 0.1 }, }, follow_official_norm: bool=True, # Multi-period discriminator related periods: List[int]=[2, 3, 5, 7, 11], period_discriminator_params: Dict[str, Any]={ "in_channels": 1, "out_channels": 1, "kernel_sizes": [5, 3], "channels": 32, "downsample_scales": [3, 3, 3, 3, 1], "max_downsample_channels": 1024, "bias": True, "nonlinear_activation": "leakyrelu", "nonlinear_activation_params": { "negative_slope": 0.1 }, "use_weight_norm": True, "use_spectral_norm": False, }, init_type: str="xavier_uniform", ): """Initilize HiFiGAN multi-scale + multi-period discriminator module. Parameters ---------- scales : int Number of multi-scales. scale_downsample_pooling : str Pooling module name for downsampling of the inputs. scale_downsample_pooling_params : dict Parameters for the above pooling module. scale_discriminator_params : dict Parameters for hifi-gan scale discriminator module. follow_official_norm : bool): Whether to follow the norm setting of the official implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm. periods : list List of periods. period_discriminator_params : dict Parameters for hifi-gan period discriminator module. The period parameter will be overwritten. """ super().__init__() # initialize parameters initialize(self, init_type) self.msd = HiFiGANMultiScaleDiscriminator( scales=scales, downsample_pooling=scale_downsample_pooling, downsample_pooling_params=scale_downsample_pooling_params, discriminator_params=scale_discriminator_params, follow_official_norm=follow_official_norm, ) self.mpd = HiFiGANMultiPeriodDiscriminator( periods=periods, discriminator_params=period_discriminator_params, ) def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Input noise signal (B, 1, T). Returns ---------- List: List of list of each discriminator outputs, which consists of each layer output tensors. Multi scale and multi period ones are concatenated. """ msd_outs = self.msd(x) mpd_outs = self.mpd(x) return msd_outs + mpd_outs class HiFiGANInference(nn.Layer): def __init__(self, normalizer, hifigan_generator): super().__init__() self.normalizer = normalizer self.hifigan_generator = hifigan_generator def forward(self, logmel): normalized_mel = self.normalizer(logmel) wav = self.hifigan_generator.inference(normalized_mel) return wav