# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tacotron2 encoder related modules.""" import six import paddle from paddle import nn class Encoder(nn.Layer): """Encoder module of Spectrogram prediction network. This is a module of encoder of Spectrogram prediction network in Tacotron2, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. This is the encoder which converts either a sequence of characters or acoustic features into the sequence of hidden states. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__( self, idim, input_layer="embed", embed_dim=512, elayers=1, eunits=512, econv_layers=3, econv_chans=512, econv_filts=5, use_batch_norm=True, use_residual=False, dropout_rate=0.5, padding_idx=0, ): """Initialize Tacotron2 encoder module. Parameters ---------- idim : int Dimension of the inputs. input_layer : str Input layer type. embed_dim : int, optional Dimension of character embedding. elayers : int, optional The number of encoder blstm layers. eunits : int, optional The number of encoder blstm units. econv_layers : int, optional The number of encoder conv layers. econv_filts : int, optional The number of encoder conv filter size. econv_chans : int, optional The number of encoder conv filter channels. use_batch_norm : bool, optional Whether to use batch normalization. use_residual : bool, optional Whether to use residual connection. dropout_rate : float, optional Dropout rate. """ super(Encoder, self).__init__() # store the hyperparameters self.idim = idim self.use_residual = use_residual # define network layer modules if input_layer == "linear": self.embed = nn.Linear(idim, econv_chans) elif input_layer == "embed": self.embed = nn.Embedding(idim, embed_dim, padding_idx=padding_idx) else: raise ValueError("unknown input_layer: " + input_layer) if econv_layers > 0: self.convs = nn.LayerList() for layer in six.moves.range(econv_layers): ichans = (embed_dim if layer == 0 and input_layer == "embed" else econv_chans) if use_batch_norm: self.convs.append( nn.Sequential( nn.Conv1D( ichans, econv_chans, econv_filts, stride=1, padding=(econv_filts - 1) // 2, bias_attr=False, ), nn.BatchNorm1D(econv_chans), nn.ReLU(), nn.Dropout(dropout_rate), )) else: self.convs += [ nn.Sequential( nn.Conv1D( ichans, econv_chans, econv_filts, stride=1, padding=(econv_filts - 1) // 2, bias_attr=False, ), nn.ReLU(), nn.Dropout(dropout_rate), ) ] else: self.convs = None if elayers > 0: iunits = econv_chans if econv_layers != 0 else embed_dim # batch_first=True, bidirectional=True self.blstm = nn.LSTM( iunits, eunits // 2, elayers, time_major=False, direction='bidirectional', bias_ih_attr=True, bias_hh_attr=True) else: self.blstm = None # # initialize # self.apply(encoder_init) def forward(self, xs, ilens=None): """Calculate forward propagation. Parameters ---------- xs : Tensor Batch of the padded sequence. Either character ids (B, Tmax) or acoustic feature (B, Tmax, idim * encoder_reduction_factor). Padded value should be 0. ilens : LongTensor Batch of lengths of each input batch (B,). Returns ---------- Tensor Batch of the sequences of encoder states(B, Tmax, eunits). LongTensor Batch of lengths of each sequence (B,) """ xs = self.embed(xs).transpose([0, 2, 1]) if self.convs is not None: for i in six.moves.range(len(self.convs)): if self.use_residual: xs += self.convs[i](xs) else: xs = self.convs[i](xs) if self.blstm is None: return xs.transpose([0, 2, 1]) if not isinstance(ilens, paddle.Tensor): ilens = paddle.to_tensor(ilens) xs = xs.transpose([0, 2, 1]) self.blstm.flatten_parameters() # (B, Tmax, C) xs, _ = self.blstm(xs) # hlens 是什么 hlens = ilens return xs, hlens def inference(self, x): """Inference. Parameters ---------- x : Tensor The sequeunce of character ids (T,) or acoustic feature (T, idim * encoder_reduction_factor). Returns ---------- Tensor The sequences of encoder states(T, eunits). """ xs = x.unsqueeze(0) ilens = paddle.to_tensor([x.shape[0]]) return self.forward(xs, ilens)[0][0]