#!/bin/bash if [ $# != 3 ];then echo "usage: ${0} config_path ckpt_path_prefix audio_file" exit -1 fi ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') echo "using $ngpu gpus..." config_path=$1 ckpt_prefix=$2 audio_file=$3 mkdir -p data wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.wav -P data/ if [ $? -ne 0 ]; then exit 1 fi if [ ! -f ${audio_file} ]; then echo "Plase input the right audio_file path" exit 1 fi # bpemode (unigram or bpe) nbpe=5000 bpemode=unigram bpeprefix="data/bpe_${bpemode}_${nbpe}" bpemodel=${bpeprefix}.model chunk_mode=false if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then chunk_mode=true fi # download language model #bash local/download_lm_ch.sh #if [ $? -ne 0 ]; then # exit 1 #fi for type in attention_rescoring; do echo "decoding ${type}" batch_size=1 output_dir=${ckpt_prefix} mkdir -p ${output_dir} python3 -u ${BIN_DIR}/test_hub.py \ --ngpu ${ngpu} \ --config ${config_path} \ --result_file ${output_dir}/${type}.rsl \ --checkpoint_path ${ckpt_prefix} \ --opts decoding.decoding_method ${type} \ --opts decoding.batch_size ${batch_size} \ --audio_file ${audio_file} #score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel}.model --wer true ${expdir}/${decode_dir} ${dict} if [ $? -ne 0 ]; then echo "Failed in evaluation!" exit 1 fi done exit 0