# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle def waveform_collate_fn(batch): waveforms = np.stack([item['feat'] for item in batch]) labels = np.stack([item['label'] for item in batch]) return {'waveforms': waveforms, 'labels': labels} def feature_normalize(feats: paddle.Tensor, mean_norm: bool=True, std_norm: bool=True, convert_to_numpy: bool=False): # Features normalization if needed # numpy.mean is a little with paddle.mean about 1e-6 if convert_to_numpy: feats_np = feats.numpy() mean = feats_np.mean(axis=-1, keepdims=True) if mean_norm else 0 std = feats_np.std(axis=-1, keepdims=True) if std_norm else 1 feats_np = (feats_np - mean) / std feats = paddle.to_tensor(feats_np, dtype=feats.dtype) else: mean = feats.mean(axis=-1, keepdim=True) if mean_norm else 0 std = feats.std(axis=-1, keepdim=True) if std_norm else 1 feats = (feats - mean) / std return feats def pad_right_2d(x, target_length, axis=-1, mode='constant', **kwargs): x = np.asarray(x) assert len( x.shape) == 2, f'Only 2D arrays supported, but got shape: {x.shape}' w = target_length - x.shape[axis] assert w >= 0, f'Target length {target_length} is less than origin length {x.shape[axis]}' if axis == 0: pad_width = [[0, w], [0, 0]] else: pad_width = [[0, 0], [0, w]] return np.pad(x, pad_width, mode=mode, **kwargs) def batch_feature_normalize(batch, mean_norm: bool=True, std_norm: bool=True): ids = [item['id'] for item in batch] lengths = np.asarray([item['feat'].shape[1] for item in batch]) feats = list( map(lambda x: pad_right_2d(x, lengths.max()), [item['feat'] for item in batch])) feats = np.stack(feats) # Features normalization if needed for i in range(len(feats)): feat = feats[i][:, :lengths[i]] # Excluding pad values. mean = feat.mean(axis=-1, keepdims=True) if mean_norm else 0 std = feat.std(axis=-1, keepdims=True) if std_norm else 1 feats[i][:, :lengths[i]] = (feat - mean) / std assert feats[i][:, lengths[ i]:].sum() == 0 # Padding valus should all be 0. # Converts into ratios. # the utterance of the max length doesn't need to padding # the remaining utterances need to padding and all of them will be padded to max length # we convert the original length of each utterance to the ratio of the max length lengths = (lengths / lengths.max()).astype(np.float32) return {'ids': ids, 'feats': feats, 'lengths': lengths}