# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import Dict from typing import List import numpy as np import paddle from paddlespeech.t2s.frontend import English from paddlespeech.t2s.frontend.ssml.xml_processor import MixTextProcessor from paddlespeech.t2s.frontend.zh_frontend import Frontend class MixFrontend(): def __init__(self, g2p_model="pypinyin", phone_vocab_path=None, tone_vocab_path=None): self.zh_frontend = Frontend( phone_vocab_path=phone_vocab_path, tone_vocab_path=tone_vocab_path) self.en_frontend = English(phone_vocab_path=phone_vocab_path) self.sp_id = self.zh_frontend.vocab_phones["sp"] self.sp_id_numpy = np.array([self.sp_id]) self.sp_id_tensor = paddle.to_tensor([self.sp_id]) def is_chinese(self, char): if char >= '\u4e00' and char <= '\u9fa5': return True else: return False def is_alphabet(self, char): if (char >= '\u0041' and char <= '\u005a') or (char >= '\u0061' and char <= '\u007a'): return True else: return False def is_other(self, char): if not (self.is_chinese(char) or self.is_alphabet(char)): return True else: return False def get_segment(self, text: str) -> List[str]: # sentence --> [ch_part, en_part, ch_part, ...] segments = [] types = [] flag = 0 temp_seg = "" temp_lang = "" # Determine the type of each character. type: blank, chinese, alphabet, number, unk and point. for ch in text: if self.is_chinese(ch): types.append("zh") elif self.is_alphabet(ch): types.append("en") else: types.append("other") assert len(types) == len(text) for i in range(len(types)): # find the first char of the seg if flag == 0: temp_seg += text[i] temp_lang = types[i] flag = 1 else: if temp_lang == "other": if types[i] == temp_lang: temp_seg += text[i] else: temp_seg += text[i] temp_lang = types[i] else: if types[i] == temp_lang: temp_seg += text[i] elif types[i] == "other": temp_seg += text[i] else: segments.append((temp_seg, temp_lang)) temp_seg = text[i] temp_lang = types[i] flag = 1 segments.append((temp_seg, temp_lang)) return segments def get_input_ids(self, sentence: str, merge_sentences: bool=False, get_tone_ids: bool=False, add_sp: bool=True, to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]: ''' 1. 添加SSML支持,先列出 文字 和 标签内容, 然后添加到tmpSegments数组里 ''' d_inputs = MixTextProcessor.get_dom_split(sentence) tmpSegments = [] for instr in d_inputs: ''' 暂时只支持 say-as ''' if instr.lower().startswith("" segments.append(tuple(currentSeg)) segments.append(seg) currentSeg = ["", ""] else: if currentSeg[0] == '': currentSeg[0] = seg[0] currentSeg[1] = seg[1] else: currentSeg[0] = currentSeg[0] + seg[0] if currentSeg[0] != '': currentSeg[0] = "" + currentSeg[0] + "" segments.append(tuple(currentSeg)) phones_list = [] result = {} for seg in segments: content = seg[0] lang = seg[1] if content != '': if lang == "en": input_ids = self.en_frontend.get_input_ids( content, merge_sentences=False, to_tensor=to_tensor) else: ''' 3. 把带speak tag的中文和普通文字分开处理 ''' if content.strip() != "" and \ re.match(r".*?.*?.*", content, re.DOTALL): input_ids = self.zh_frontend.get_input_ids_ssml( content, merge_sentences=False, get_tone_ids=get_tone_ids, to_tensor=to_tensor) else: input_ids = self.zh_frontend.get_input_ids( content, merge_sentences=False, get_tone_ids=get_tone_ids, to_tensor=to_tensor) if add_sp: if to_tensor: input_ids["phone_ids"][-1] = paddle.concat( [input_ids["phone_ids"][-1], self.sp_id_tensor]) else: input_ids["phone_ids"][-1] = np.concatenate( (input_ids["phone_ids"][-1], self.sp_id_numpy)) for phones in input_ids["phone_ids"]: phones_list.append(phones) if merge_sentences: merge_list = paddle.concat(phones_list) # rm the last 'sp' to avoid the noise at the end # cause in the training data, no 'sp' in the end if (to_tensor and merge_list[-1] == self.sp_id_tensor) or ( not to_tensor and merge_list[-1] == self.sp_id_numpy): merge_list = merge_list[:-1] phones_list = [] phones_list.append(merge_list) result["phone_ids"] = phones_list return result