# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from abc import abstractmethod from g2p_en import G2p from g2pM import G2pM from paddlespeech.t2s.frontend.normalizer.normalizer import normalize from paddlespeech.t2s.frontend.punctuation import get_punctuations from paddlespeech.t2s.frontend.vocab import Vocab # discard opencc untill we find an easy solution to install it on windows # from opencc import OpenCC __all__ = ["Phonetics", "English", "EnglishCharacter", "Chinese"] class Phonetics(ABC): @abstractmethod def __call__(self, sentence): pass @abstractmethod def phoneticize(self, sentence): pass @abstractmethod def numericalize(self, phonemes): pass class English(Phonetics): """ Normalize the input text sequence and convert into pronunciation id sequence. """ def __init__(self): self.backend = G2p() self.phonemes = list(self.backend.phonemes) self.punctuations = get_punctuations("en") self.vocab = Vocab(self.phonemes + self.punctuations) def phoneticize(self, sentence): """ Normalize the input text sequence and convert it into pronunciation sequence. Parameters ----------- sentence: str The input text sequence. Returns ---------- List[str] The list of pronunciation sequence. """ start = self.vocab.start_symbol end = self.vocab.end_symbol phonemes = ([] if start is None else [start]) \ + self.backend(sentence) \ + ([] if end is None else [end]) phonemes = [item for item in phonemes if item in self.vocab.stoi] return phonemes def numericalize(self, phonemes): """ Convert pronunciation sequence into pronunciation id sequence. Parameters ----------- phonemes: List[str] The list of pronunciation sequence. Returns ---------- List[int] The list of pronunciation id sequence. """ ids = [ self.vocab.lookup(item) for item in phonemes if item in self.vocab.stoi ] return ids def reverse(self, ids): """ Reverse the list of pronunciation id sequence to a list of pronunciation sequence. Parameters ----------- ids: List[int] The list of pronunciation id sequence. Returns ---------- List[str] The list of pronunciation sequence. """ return [self.vocab.reverse(i) for i in ids] def __call__(self, sentence): """ Convert the input text sequence into pronunciation id sequence. Parameters ----------- sentence: str The input text sequence. Returns ---------- List[str] The list of pronunciation id sequence. """ return self.numericalize(self.phoneticize(sentence)) @property def vocab_size(self): """ Vocab size. """ return len(self.vocab) class EnglishCharacter(Phonetics): """ Normalize the input text sequence and convert it into character id sequence. """ def __init__(self): self.backend = G2p() self.graphemes = list(self.backend.graphemes) self.punctuations = get_punctuations("en") self.vocab = Vocab(self.graphemes + self.punctuations) def phoneticize(self, sentence): """ Normalize the input text sequence. Parameters ----------- sentence: str The input text sequence. Returns ---------- str A text sequence after normalize. """ words = normalize(sentence) return words def numericalize(self, sentence): """ Convert a text sequence into ids. Parameters ----------- sentence: str The input text sequence. Returns ---------- List[int] List of a character id sequence. """ ids = [ self.vocab.lookup(item) for item in sentence if item in self.vocab.stoi ] return ids def reverse(self, ids): """ Convert a character id sequence into text. Parameters ----------- ids: List[int] List of a character id sequence. Returns ---------- str The input text sequence. """ return [self.vocab.reverse(i) for i in ids] def __call__(self, sentence): """ Normalize the input text sequence and convert it into character id sequence. Parameters ----------- sentence: str The input text sequence. Returns ---------- List[int] List of a character id sequence. """ return self.numericalize(self.phoneticize(sentence)) @property def vocab_size(self): """ Vocab size. """ return len(self.vocab) class Chinese(Phonetics): """Normalize Chinese text sequence and convert it into ids. """ def __init__(self): # self.opencc_backend = OpenCC('t2s.json') self.backend = G2pM() self.phonemes = self._get_all_syllables() self.punctuations = get_punctuations("cn") self.vocab = Vocab(self.phonemes + self.punctuations) def _get_all_syllables(self): all_syllables = set([ syllable for k, v in self.backend.cedict.items() for syllable in v ]) return list(all_syllables) def phoneticize(self, sentence): """ Normalize the input text sequence and convert it into pronunciation sequence. Parameters ----------- sentence: str The input text sequence. Returns ---------- List[str] The list of pronunciation sequence. """ # simplified = self.opencc_backend.convert(sentence) simplified = sentence phonemes = self.backend(simplified) start = self.vocab.start_symbol end = self.vocab.end_symbol phonemes = ([] if start is None else [start]) \ + phonemes \ + ([] if end is None else [end]) return self._filter_symbols(phonemes) def _filter_symbols(self, phonemes): cleaned_phonemes = [] for item in phonemes: if item in self.vocab.stoi: cleaned_phonemes.append(item) else: for char in item: if char in self.vocab.stoi: cleaned_phonemes.append(char) return cleaned_phonemes def numericalize(self, phonemes): """ Convert pronunciation sequence into pronunciation id sequence. Parameters ----------- phonemes: List[str] The list of pronunciation sequence. Returns ---------- List[int] The list of pronunciation id sequence. """ ids = [self.vocab.lookup(item) for item in phonemes] return ids def __call__(self, sentence): """ Convert the input text sequence into pronunciation id sequence. Parameters ----------- sentence: str The input text sequence. Returns ---------- List[str] The list of pronunciation id sequence. """ return self.numericalize(self.phoneticize(sentence)) @property def vocab_size(self): """ Vocab size. """ return len(self.vocab) def reverse(self, ids): """ Reverse the list of pronunciation id sequence to a list of pronunciation sequence. Parameters ----------- ids: List[int] The list of pronunciation id sequence. Returns ---------- List[str] The list of pronunciation sequence. """ return [self.vocab.reverse(i) for i in ids]