# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil from pathlib import Path import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle import nn from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from paddle.optimizer import Adam from paddle.optimizer.lr import MultiStepDecay from yacs.config import CfgNode from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.vocoder_batch_fn import Clip from paddlespeech.t2s.models.melgan import MBMelGANEvaluator from paddlespeech.t2s.models.melgan import MBMelGANUpdater from paddlespeech.t2s.models.melgan import MelGANGenerator from paddlespeech.t2s.models.melgan import MelGANMultiScaleDiscriminator from paddlespeech.t2s.modules.adversarial_loss import DiscriminatorAdversarialLoss from paddlespeech.t2s.modules.adversarial_loss import GeneratorAdversarialLoss from paddlespeech.t2s.modules.pqmf import PQMF from paddlespeech.t2s.modules.stft_loss import MultiResolutionSTFTLoss from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly world_size = paddle.distributed.get_world_size() if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0: paddle.set_device("cpu") else: paddle.set_device("gpu") if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = DataTable( data=train_metadata, fields=["wave", "feats"], converters={ "wave": np.load, "feats": np.load, }, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = DataTable( data=dev_metadata, fields=["wave", "feats"], converters={ "wave": np.load, "feats": np.load, }, ) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) dev_sampler = DistributedBatchSampler( dev_dataset, batch_size=config.batch_size, shuffle=False, drop_last=False) print("samplers done!") if "aux_context_window" in config.generator_params: aux_context_window = config.generator_params.aux_context_window else: aux_context_window = 0 train_batch_fn = Clip( batch_max_steps=config.batch_max_steps, hop_size=config.n_shift, aux_context_window=aux_context_window) train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=train_batch_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, batch_sampler=dev_sampler, collate_fn=train_batch_fn, num_workers=config.num_workers) print("dataloaders done!") generator = MelGANGenerator(**config["generator_params"]) discriminator = MelGANMultiScaleDiscriminator( **config["discriminator_params"]) if world_size > 1: generator = DataParallel(generator) discriminator = DataParallel(discriminator) print("models done!") criterion_stft = MultiResolutionSTFTLoss(**config["stft_loss_params"]) criterion_sub_stft = MultiResolutionSTFTLoss( **config["subband_stft_loss_params"]) criterion_gen_adv = GeneratorAdversarialLoss() criterion_dis_adv = DiscriminatorAdversarialLoss() # define special module for subband processing criterion_pqmf = PQMF(subbands=config["generator_params"]["out_channels"]) print("criterions done!") lr_schedule_g = MultiStepDecay(**config["generator_scheduler_params"]) # Compared to multi_band_melgan.v1 config, Adam optimizer without gradient norm is used generator_grad_norm = config["generator_grad_norm"] gradient_clip_g = nn.ClipGradByGlobalNorm( generator_grad_norm) if generator_grad_norm > 0 else None print("gradient_clip_g:", gradient_clip_g) optimizer_g = Adam( learning_rate=lr_schedule_g, grad_clip=gradient_clip_g, parameters=generator.parameters(), **config["generator_optimizer_params"]) lr_schedule_d = MultiStepDecay(**config["discriminator_scheduler_params"]) discriminator_grad_norm = config["discriminator_grad_norm"] gradient_clip_d = nn.ClipGradByGlobalNorm( discriminator_grad_norm) if discriminator_grad_norm > 0 else None print("gradient_clip_d:", gradient_clip_d) optimizer_d = Adam( learning_rate=lr_schedule_d, grad_clip=gradient_clip_d, parameters=discriminator.parameters(), **config["discriminator_optimizer_params"]) print("optimizers done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = MBMelGANUpdater( models={ "generator": generator, "discriminator": discriminator, }, optimizers={ "generator": optimizer_g, "discriminator": optimizer_d, }, criterions={ "stft": criterion_stft, "sub_stft": criterion_sub_stft, "gen_adv": criterion_gen_adv, "dis_adv": criterion_dis_adv, "pqmf": criterion_pqmf }, schedulers={ "generator": lr_schedule_g, "discriminator": lr_schedule_d, }, dataloader=train_dataloader, discriminator_train_start_steps=config.discriminator_train_start_steps, lambda_adv=config.lambda_adv, output_dir=output_dir) evaluator = MBMelGANEvaluator( models={ "generator": generator, "discriminator": discriminator, }, criterions={ "stft": criterion_stft, "sub_stft": criterion_sub_stft, "gen_adv": criterion_gen_adv, "dis_adv": criterion_dis_adv, "pqmf": criterion_pqmf }, dataloader=dev_dataloader, lambda_adv=config.lambda_adv, output_dir=output_dir) trainer = Trainer( updater, stop_trigger=(config.train_max_steps, "iteration"), out=output_dir) if dist.get_rank() == 0: trainer.extend( evaluator, trigger=(config.eval_interval_steps, 'iteration')) trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration')) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(config.save_interval_steps, 'iteration')) print("Trainer Done!") trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser( description="Train a Multi-Band MelGAN model.") parser.add_argument( "--config", type=str, help="config file to overwrite default config.") parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--dev-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") parser.add_argument("--verbose", type=int, default=1, help="verbose.") args = parser.parse_args() with open(args.config, 'rt') as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.ngpu > 1: dist.spawn(train_sp, (args, config), nprocs=args.ngpu) else: train_sp(args, config) if __name__ == "__main__": main()