#!/bin/bash stage=-1 stop_stage=100 dict_dir=data/lang_char # bpemode (unigram or bpe) nbpe=5000 bpemode=unigram bpeprefix="${dict_dir}/bpe_${bpemode}_${nbpe}" stride_ms=10 window_ms=25 sample_rate=16000 feat_dim=80 source ${MAIN_ROOT}/utils/parse_options.sh mkdir -p data mkdir -p ${dict_dir} TARGET_DIR=${MAIN_ROOT}/examples/dataset mkdir -p ${TARGET_DIR} if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then # download data, generate manifests python3 ${TARGET_DIR}/librispeech/librispeech.py \ --manifest_prefix="data/manifest" \ --target_dir="${TARGET_DIR}/librispeech" \ --full_download="True" if [ $? -ne 0 ]; then echo "Prepare LibriSpeech failed. Terminated." exit 1 fi for sub in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do mv data/manifest.${sub} data/manifest.${sub}.raw done rm -rf data/manifest.train.raw data/manifest.dev.raw data/manifest.test.raw for sub in train-clean-100 train-clean-360 train-other-500; do cat data/manifest.${sub}.raw >> data/manifest.train.raw done for sub in dev-clean dev-other; do cat data/manifest.${sub}.raw >> data/manifest.dev.raw done for sub in test-clean test-other; do cat data/manifest.${sub}.raw >> data/manifest.test.raw done fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # compute mean and stddev for normalizer num_workers=$(nproc) python3 ${MAIN_ROOT}/utils/compute_mean_std.py \ --manifest_path="data/manifest.train.raw" \ --num_samples=-1 \ --spectrum_type="fbank" \ --feat_dim=${feat_dim} \ --delta_delta=false \ --sample_rate=${sample_rate} \ --stride_ms=${stride_ms} \ --window_ms=${window_ms} \ --use_dB_normalization=False \ --num_workers=${num_workers} \ --output_path="data/mean_std.json" if [ $? -ne 0 ]; then echo "Compute mean and stddev failed. Terminated." exit 1 fi fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # build vocabulary python3 ${MAIN_ROOT}/utils/build_vocab.py \ --unit_type "spm" \ --spm_vocab_size=${nbpe} \ --spm_mode ${bpemode} \ --spm_model_prefix ${bpeprefix} \ --vocab_path="${dict_dir}/vocab.txt" \ --manifest_paths="data/manifest.train.raw" if [ $? -ne 0 ]; then echo "Build vocabulary failed. Terminated." exit 1 fi fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # format manifest with tokenids, vocab size for sub in train dev test dev-clean dev-other test-clean test-other; do { python3 ${MAIN_ROOT}/utils/format_data.py \ --cmvn_path "data/mean_std.json" \ --unit_type "spm" \ --spm_model_prefix ${bpeprefix} \ --vocab_path="${dict_dir}/vocab.txt" \ --manifest_path="data/manifest.${sub}.raw" \ --output_path="data/manifest.${sub}" if [ $? -ne 0 ]; then echo "Formt mnaifest failed. Terminated." exit 1 fi }& done wait for sub in train dev; do mv data/manifest.${sub} data/manifest.${sub}.fmt done fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then for sub in train dev; do remove_longshortdata.py --maxframes 3000 --maxchars 400 --stride_ms ${stride_ms} data/manifest.${sub}.fmt data/manifest.${sub} done fi echo "LibriSpeech Data preparation done." exit 0