# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import os import re from pathlib import Path from typing import Union import paddle from paddle import distributed as dist from paddle.optimizer import Optimizer from deepspeech.utils import mp_tools from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = ["Checkpoint"] class Checkpoint(object): def __init__(self, kbest_n: int=5, latest_n: int=1): self.best_records: Mapping[Path, float] = {} self.latest_records = [] self.kbest_n = kbest_n self.latest_n = latest_n self._save_all = (kbest_n == -1) def add_checkpoint(self, checkpoint_dir, tag_or_iteration, model, optimizer, infos, metric_type="val_loss"): if (metric_type not in infos.keys()): self._save_parameters(checkpoint_dir, tag_or_iteration, model, optimizer, infos) return #save best if self._should_save_best(infos[metric_type]): self._save_best_checkpoint_and_update( infos[metric_type], checkpoint_dir, tag_or_iteration, model, optimizer, infos) #save latest self._save_latest_checkpoint_and_update( checkpoint_dir, tag_or_iteration, model, optimizer, infos) if isinstance(tag_or_iteration, int): self._save_checkpoint_record(checkpoint_dir, tag_or_iteration) def load_latest_parameters(self, model, optimizer=None, checkpoint_dir=None, checkpoint_path=None): """Load a last model checkpoint from disk. Args: model (Layer): model to load parameters. optimizer (Optimizer, optional): optimizer to load states if needed. Defaults to None. checkpoint_dir (str, optional): the directory where checkpoint is saved. checkpoint_path (str, optional): if specified, load the checkpoint stored in the checkpoint_path(prefix) and the argument 'checkpoint_dir' will be ignored. Defaults to None. Returns: configs (dict): epoch or step, lr and other meta info should be saved. """ return self._load_parameters(model, optimizer, checkpoint_dir, checkpoint_path, "checkpoint_latest") def load_best_parameters(self, model, optimizer=None, checkpoint_dir=None, checkpoint_path=None): """Load a last model checkpoint from disk. Args: model (Layer): model to load parameters. optimizer (Optimizer, optional): optimizer to load states if needed. Defaults to None. checkpoint_dir (str, optional): the directory where checkpoint is saved. checkpoint_path (str, optional): if specified, load the checkpoint stored in the checkpoint_path(prefix) and the argument 'checkpoint_dir' will be ignored. Defaults to None. Returns: configs (dict): epoch or step, lr and other meta info should be saved. """ return self._load_parameters(model, optimizer, checkpoint_dir, checkpoint_path, "checkpoint_best") def _should_save_best(self, metric: float) -> bool: if not self._best_full(): return True # already full worst_record_path = max(self.best_records, key=self.best_records.get) # worst_record_path = max(self.best_records.iteritems(), key=operator.itemgetter(1))[0] worst_metric = self.best_records[worst_record_path] return metric < worst_metric def _best_full(self): return (not self._save_all) and len(self.best_records) == self.kbest_n def _latest_full(self): return len(self.latest_records) == self.latest_n def _save_best_checkpoint_and_update(self, metric, checkpoint_dir, tag_or_iteration, model, optimizer, infos): # remove the worst if self._best_full(): worst_record_path = max(self.best_records, key=self.best_records.get) self.best_records.pop(worst_record_path) if (worst_record_path not in self.latest_records): logger.info( "remove the worst checkpoint: {}".format(worst_record_path)) self._del_checkpoint(checkpoint_dir, worst_record_path) # add the new one self._save_parameters(checkpoint_dir, tag_or_iteration, model, optimizer, infos) self.best_records[tag_or_iteration] = metric def _save_latest_checkpoint_and_update( self, checkpoint_dir, tag_or_iteration, model, optimizer, infos): # remove the old if self._latest_full(): to_del_fn = self.latest_records.pop(0) if (to_del_fn not in self.best_records.keys()): logger.info( "remove the latest checkpoint: {}".format(to_del_fn)) self._del_checkpoint(checkpoint_dir, to_del_fn) self.latest_records.append(tag_or_iteration) self._save_parameters(checkpoint_dir, tag_or_iteration, model, optimizer, infos) def _del_checkpoint(self, checkpoint_dir, tag_or_iteration): checkpoint_path = os.path.join(checkpoint_dir, "{}".format(tag_or_iteration)) for filename in glob.glob(checkpoint_path + ".*"): os.remove(filename) logger.info("delete file: {}".format(filename)) def _load_checkpoint_idx(self, checkpoint_record: str) -> int: """Get the iteration number corresponding to the latest saved checkpoint. Args: checkpoint_path (str): the saved path of checkpoint. Returns: int: the latest iteration number. -1 for no checkpoint to load. """ if not os.path.isfile(checkpoint_record): return -1 # Fetch the latest checkpoint index. with open(checkpoint_record, "rt") as handle: latest_checkpoint = handle.readlines()[-1].strip() iteration = int(latest_checkpoint.split(":")[-1]) return iteration def _save_checkpoint_record(self, checkpoint_dir: str, iteration: int): """Save the iteration number of the latest model to be checkpoint record. Args: checkpoint_dir (str): the directory where checkpoint is saved. iteration (int): the latest iteration number. Returns: None """ checkpoint_record_latest = os.path.join(checkpoint_dir, "checkpoint_latest") checkpoint_record_best = os.path.join(checkpoint_dir, "checkpoint_best") with open(checkpoint_record_best, "w") as handle: for i in self.best_records.keys(): handle.write("model_checkpoint_path:{}\n".format(i)) with open(checkpoint_record_latest, "w") as handle: for i in self.latest_records: handle.write("model_checkpoint_path:{}\n".format(i)) def _load_parameters(self, model, optimizer=None, checkpoint_dir=None, checkpoint_path=None, checkpoint_file=None): """Load a last model checkpoint from disk. Args: model (Layer): model to load parameters. optimizer (Optimizer, optional): optimizer to load states if needed. Defaults to None. checkpoint_dir (str, optional): the directory where checkpoint is saved. checkpoint_path (str, optional): if specified, load the checkpoint stored in the checkpoint_path(prefix) and the argument 'checkpoint_dir' will be ignored. Defaults to None. checkpoint_file "checkpoint_latest" or "checkpoint_best" Returns: configs (dict): epoch or step, lr and other meta info should be saved. """ configs = {} if checkpoint_path is not None: tag = os.path.basename(checkpoint_path).split(":")[-1] elif checkpoint_dir is not None and checkpoint_file is not None: checkpoint_record = os.path.join(checkpoint_dir, checkpoint_file) iteration = self._load_checkpoint_idx(checkpoint_record) if iteration == -1: return configs checkpoint_path = os.path.join(checkpoint_dir, "{}".format(iteration)) else: raise ValueError( "At least one of 'checkpoint_dir' and 'checkpoint_file' and 'checkpoint_path' should be specified!" ) rank = dist.get_rank() params_path = checkpoint_path + ".pdparams" model_dict = paddle.load(params_path) model.set_state_dict(model_dict) logger.info("Rank {}: loaded model from {}".format(rank, params_path)) optimizer_path = checkpoint_path + ".pdopt" if optimizer and os.path.isfile(optimizer_path): optimizer_dict = paddle.load(optimizer_path) optimizer.set_state_dict(optimizer_dict) logger.info("Rank {}: loaded optimizer state from {}".format( rank, optimizer_path)) info_path = re.sub('.pdparams$', '.json', params_path) if os.path.exists(info_path): with open(info_path, 'r') as fin: configs = json.load(fin) return configs @mp_tools.rank_zero_only def _save_parameters(self, checkpoint_dir: str, tag_or_iteration: Union[int, str], model: paddle.nn.Layer, optimizer: Optimizer=None, infos: dict=None): """Checkpoint the latest trained model parameters. Args: checkpoint_dir (str): the directory where checkpoint is saved. tag_or_iteration (int or str): the latest iteration(step or epoch) number. model (Layer): model to be checkpointed. optimizer (Optimizer, optional): optimizer to be checkpointed. Defaults to None. infos (dict or None): any info you want to save. Returns: None """ checkpoint_path = os.path.join(checkpoint_dir, "{}".format(tag_or_iteration)) model_dict = model.state_dict() params_path = checkpoint_path + ".pdparams" paddle.save(model_dict, params_path) logger.info("Saved model to {}".format(params_path)) if optimizer: opt_dict = optimizer.state_dict() optimizer_path = checkpoint_path + ".pdopt" paddle.save(opt_dict, optimizer_path) logger.info("Saved optimzier state to {}".format(optimizer_path)) info_path = re.sub('.pdparams$', '.json', params_path) infos = {} if infos is None else infos with open(info_path, 'w') as fout: data = json.dumps(infos) fout.write(data)