# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re from typing import List from typing import Optional from typing import Union import paddle from ...s2t.utils.dynamic_import import dynamic_import from ..executor import BaseExecutor from ..log import logger from ..utils import cli_register from ..utils import download_and_decompress from ..utils import MODEL_HOME from ..utils import stats_wrapper __all__ = ['TextExecutor'] pretrained_models = { # The tags for pretrained_models should be "{model_name}[_{dataset}][-{lang}][-...]". # e.g. "conformer_wenetspeech-zh-16k", "transformer_aishell-zh-16k" and "panns_cnn6-32k". # Command line and python api use "{model_name}[_{dataset}]" as --model, usage: # "paddlespeech asr --model conformer_wenetspeech --lang zh --sr 16000 --input ./input.wav" "ernie_linear_p7_wudao-punc-zh": { 'url': 'https://paddlespeech.bj.bcebos.com/text/ernie_linear_p7_wudao-punc-zh.tar.gz', 'md5': '12283e2ddde1797c5d1e57036b512746', 'cfg_path': 'ckpt/model_config.json', 'ckpt_path': 'ckpt/model_state.pdparams', 'vocab_file': 'punc_vocab.txt', }, "ernie_linear_p3_wudao-punc-zh": { 'url': 'https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_wudao-punc-zh.tar.gz', 'md5': '448eb2fdf85b6a997e7e652e80c51dd2', 'cfg_path': 'ckpt/model_config.json', 'ckpt_path': 'ckpt/model_state.pdparams', 'vocab_file': 'punc_vocab.txt', }, } model_alias = { "ernie_linear_p7": "paddlespeech.text.models:ErnieLinear", "ernie_linear_p3": "paddlespeech.text.models:ErnieLinear", } tokenizer_alias = { "ernie_linear_p7": "paddlenlp.transformers:ErnieTokenizer", "ernie_linear_p3": "paddlenlp.transformers:ErnieTokenizer", } @cli_register(name='paddlespeech.text', description='Text infer command.') class TextExecutor(BaseExecutor): def __init__(self): super(TextExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech.text', add_help=True) self.parser.add_argument( '--input', type=str, required=True, help='Input text.') self.parser.add_argument( '--task', type=str, default='punc', choices=['punc'], help='Choose text task.') self.parser.add_argument( '--model', type=str, default='ernie_linear_p7_wudao', choices=[tag[:tag.index('-')] for tag in pretrained_models.keys()], help='Choose model type of text task.') self.parser.add_argument( '--lang', type=str, default='zh', choices=['zh', 'en'], help='Choose model language.') self.parser.add_argument( '--config', type=str, default=None, help='Config of cls task. Use deault config when it is None.') self.parser.add_argument( '--ckpt_path', type=str, default=None, help='Checkpoint file of model.') self.parser.add_argument( '--punc_vocab', type=str, default=None, help='Vocabulary file of punctuation restoration task.') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') def _get_pretrained_path(self, tag: str) -> os.PathLike: """ Download and returns pretrained resources path of current task. """ assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format( tag) res_path = os.path.join(MODEL_HOME, tag) decompressed_path = download_and_decompress(pretrained_models[tag], res_path) decompressed_path = os.path.abspath(decompressed_path) logger.info( 'Use pretrained model stored in: {}'.format(decompressed_path)) return decompressed_path def _init_from_path(self, task: str='punc', model_type: str='ernie_linear_p7_wudao', lang: str='zh', cfg_path: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, vocab_file: Optional[os.PathLike]=None): """ Init model and other resources from a specific path. """ if hasattr(self, 'model'): logger.info('Model had been initialized.') return self.task = task if cfg_path is None or ckpt_path is None or vocab_file is None: tag = '-'.join([model_type, task, lang]) self.res_path = self._get_pretrained_path(tag) self.cfg_path = os.path.join(self.res_path, pretrained_models[tag]['cfg_path']) self.ckpt_path = os.path.join(self.res_path, pretrained_models[tag]['ckpt_path']) self.vocab_file = os.path.join(self.res_path, pretrained_models[tag]['vocab_file']) else: self.cfg_path = os.path.abspath(cfg_path) self.ckpt_path = os.path.abspath(ckpt_path) self.vocab_file = os.path.abspath(vocab_file) model_name = model_type[:model_type.rindex('_')] if self.task == 'punc': # punc list self._punc_list = [] with open(self.vocab_file, 'r') as f: for line in f: self._punc_list.append(line.strip()) # model model_class = dynamic_import(model_name, model_alias) tokenizer_class = dynamic_import(model_name, tokenizer_alias) self.model = model_class( cfg_path=self.cfg_path, ckpt_path=self.ckpt_path) self.tokenizer = tokenizer_class.from_pretrained('ernie-1.0') else: raise NotImplementedError self.model.eval() def _clean_text(self, text): text = text.lower() text = re.sub('[^A-Za-z0-9\u4e00-\u9fa5]', '', text) text = re.sub(f'[{"".join([p for p in self._punc_list][1:])}]', '', text) return text def preprocess(self, text: Union[str, os.PathLike]): """ Input preprocess and return paddle.Tensor stored in self.input. Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet). """ if self.task == 'punc': clean_text = self._clean_text(text) assert len(clean_text) > 0, f'Invalid input string: {text}' tokenized_input = self.tokenizer( list(clean_text), return_length=True, is_split_into_words=True) self._inputs['input_ids'] = tokenized_input['input_ids'] self._inputs['seg_ids'] = tokenized_input['token_type_ids'] self._inputs['seq_len'] = tokenized_input['seq_len'] else: raise NotImplementedError @paddle.no_grad() def infer(self): """ Model inference and result stored in self.output. """ if self.task == 'punc': input_ids = paddle.to_tensor(self._inputs['input_ids']).unsqueeze(0) seg_ids = paddle.to_tensor(self._inputs['seg_ids']).unsqueeze(0) logits, _ = self.model(input_ids, seg_ids) preds = paddle.argmax(logits, axis=-1).squeeze(0) self._outputs['preds'] = preds else: raise NotImplementedError def postprocess(self) -> Union[str, os.PathLike]: """ Output postprocess and return human-readable results such as texts and audio files. """ if self.task == 'punc': input_ids = self._inputs['input_ids'] seq_len = self._inputs['seq_len'] preds = self._outputs['preds'] tokens = self.tokenizer.convert_ids_to_tokens( input_ids[1:seq_len - 1]) labels = preds[1:seq_len - 1].tolist() assert len(tokens) == len(labels) text = '' for t, l in zip(tokens, labels): text += t if l != 0: # Non punc. text += self._punc_list[l] return text else: raise NotImplementedError def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) text = parser_args.input task = parser_args.task model_type = parser_args.model lang = parser_args.lang cfg_path = parser_args.config ckpt_path = parser_args.ckpt_path punc_vocab = parser_args.punc_vocab device = parser_args.device try: res = self(text, task, model_type, lang, cfg_path, ckpt_path, punc_vocab, device) logger.info('Text Result:\n{}'.format(res)) return True except Exception as e: logger.exception(e) return False @stats_wrapper def __call__( self, text: str, task: str='punc', model: str='ernie_linear_p7_wudao', lang: str='zh', config: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, punc_vocab: Optional[os.PathLike]=None, device: str=paddle.get_device(), ): """ Python API to call an executor. """ paddle.set_device(device) self._init_from_path(task, model, lang, config, ckpt_path, punc_vocab) self.preprocess(text) self.infer() res = self.postprocess() # Retrieve result of text task. return res