# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections.abc as collections_abc import paddle _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 ] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 ] def piecewise(x, condlist, funclist, *args, **kw): n2 = len(funclist) # n = len(condlist) n = 1 if n == n2 - 1: # compute the "otherwise" condition. condelse = ~paddle.any(condlist, axis=0, keepdim=True) condlist = paddle.concat([condlist, condelse], axis=0) n += 1 elif n != n2: raise ValueError( "with {} condition(s), either {} or {} functions are expected" .format(n, n, n + 1)) y = paddle.zeros(paddle.shape(x), x.dtype) for k in range(n): item = funclist[k] if not isinstance(item, collections_abc.Callable): y[condlist[k]] = item else: temp = condlist[k] if paddle.shape(x) == paddle.ones([1]): vals = x y = item(vals, *args, **kw) else: vals = x[temp] y[temp] = item(vals, *args, **kw) return y def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x * b1 - b2 + vals[i] return 0.5 * (b0 - b2) def _i0_1(x): out = paddle.exp(x) * _chbevl(x / 2.0 - 2, _i0A) return paddle.cast(out, dtype="float32") def _i0_2(x): out = paddle.exp(x) * _chbevl(32.0 / x - 2.0, _i0B) / paddle.sqrt(x) return paddle.cast(out, dtype="float32") def _i0_dispatcher(x): return (x, ) def i0(x): x = paddle.abs(x) condlist = x <= paddle.full([1], 8.0) condlist = condlist.unsqueeze(0) return piecewise(x, condlist, [_i0_1, _i0_2]) def _len_guards(M): """Handle small or incorrect window lengths""" if int(M) != M or M < 0: raise ValueError('Window length M must be a non-negative integer') return M <= 1 def _extend(M, sym): """Extend window by 1 sample if needed for DFT-even symmetry""" if not sym: return M + 1, True else: return M, False def _truncate(w, needed): """Truncate window by 1 sample if needed for DFT-even symmetry""" if needed: return w[:-1] else: return w def kaiser(M, beta, sym=True): if _len_guards(M): return paddle.ones(M) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M) alpha = (M - 1) / 2.0 a = i0(beta * paddle.sqrt(1 - ((n - alpha) / alpha)**2.0)) b = i0(paddle.full([1], beta)) w = a / b return _truncate(w, needs_trunc)