# Copyright (c) 2023 speechbrain Authors. All Rights Reserved. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from speechbrain(https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/processing/speech_augmentation.py) """Classes for mutating speech data for data augmentation. This module provides classes that produce realistic distortions of speech data for the purpose of training speech processing models. The list of distortions includes adding noise, adding reverberation, changing speed, and more. All the classes are of type `torch.nn.Module`. This gives the possibility to have end-to-end differentiability and backpropagate the gradient through them. In addition, all operations are expected to be performed on the GPU (where available) for efficiency. Authors * Peter Plantinga 2020 """ import math import paddle import paddle.nn as nn from paddlespeech.s2t.models.wav2vec2.processing.signal_processing import compute_amplitude from paddlespeech.s2t.models.wav2vec2.processing.signal_processing import convolve1d from paddlespeech.s2t.models.wav2vec2.processing.signal_processing import notch_filter class SpeedPerturb(nn.Layer): """Slightly speed up or slow down an audio signal. Resample the audio signal at a rate that is similar to the original rate, to achieve a slightly slower or slightly faster signal. This technique is outlined in the paper: "Audio Augmentation for Speech Recognition" Arguments --------- orig_freq : int The frequency of the original signal. speeds : list The speeds that the signal should be changed to, as a percentage of the original signal (i.e. `speeds` is divided by 100 to get a ratio). perturb_prob : float The chance that the batch will be speed- perturbed. By default, every batch is perturbed. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> perturbator = SpeedPerturb(orig_freq=16000, speeds=[90]) >>> clean = signal.unsqueeze(0) >>> perturbed = perturbator(clean) >>> clean.shape paddle.shape([1, 52173]) >>> perturbed.shape paddle.shape([1, 46956]) """ def __init__( self, orig_freq, speeds=[90, 100, 110], perturb_prob=1.0, ): super().__init__() self.orig_freq = orig_freq self.speeds = speeds self.perturb_prob = perturb_prob # Initialize index of perturbation self.samp_index = 0 # Initialize resamplers self.resamplers = [] for speed in self.speeds: config = { "orig_freq": self.orig_freq, "new_freq": self.orig_freq * speed // 100, } self.resamplers.append(Resample(**config)) def forward(self, waveform): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ # Don't perturb (return early) 1-`perturb_prob` portion of the batches if paddle.rand([1]) > self.perturb_prob: return waveform.clone() # Perform a random perturbation self.samp_index = paddle.randint(len(self.speeds), shape=(1, ))[0] perturbed_waveform = self.resamplers[self.samp_index](waveform) return perturbed_waveform class Resample(nn.Layer): """This class resamples an audio signal using sinc-based interpolation. It is a modification of the `resample` function from torchaudio (https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html) Arguments --------- orig_freq : int the sampling frequency of the input signal. new_freq : int the new sampling frequency after this operation is performed. lowpass_filter_width : int Controls the sharpness of the filter, larger numbers result in a sharper filter, but they are less efficient. Values from 4 to 10 are allowed. """ def __init__( self, orig_freq=16000, new_freq=16000, lowpass_filter_width=6, ): super().__init__() self.orig_freq = orig_freq self.new_freq = new_freq self.lowpass_filter_width = lowpass_filter_width # Compute rate for striding self._compute_strides() assert self.orig_freq % self.conv_stride == 0 assert self.new_freq % self.conv_transpose_stride == 0 def _compute_strides(self): """Compute the phases in polyphase filter. (almost directly from torchaudio.compliance.kaldi) """ # Compute new unit based on ratio of in/out frequencies base_freq = math.gcd(self.orig_freq, self.new_freq) input_samples_in_unit = self.orig_freq // base_freq self.output_samples = self.new_freq // base_freq # Store the appropriate stride based on the new units self.conv_stride = input_samples_in_unit self.conv_transpose_stride = self.output_samples def forward(self, waveforms): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ if not hasattr(self, "first_indices"): self._indices_and_weights(waveforms) # Don't do anything if the frequencies are the same if self.orig_freq == self.new_freq: return waveforms unsqueezed = False if len(waveforms.shape) == 2: waveforms = waveforms.unsqueeze(1) unsqueezed = True elif len(waveforms.shape) == 3: waveforms = waveforms.transpose([0, 2, 1]) else: raise ValueError("Input must be 2 or 3 dimensions") # Do resampling resampled_waveform = self._perform_resample(waveforms) if unsqueezed: resampled_waveform = resampled_waveform.squeeze(1) else: resampled_waveform = resampled_waveform.transpose([0, 2, 1]) return resampled_waveform def _perform_resample(self, waveforms): """Resamples the waveform at the new frequency. This matches Kaldi's OfflineFeatureTpl ResampleWaveform which uses a LinearResample (resample a signal at linearly spaced intervals to up/downsample a signal). LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of `new_freq`). It uses sinc/bandlimited interpolation to upsample/downsample the signal. (almost directly from torchaudio.compliance.kaldi) https://ccrma.stanford.edu/~jos/resample/ Theory_Ideal_Bandlimited_Interpolation.html https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56 Arguments --------- waveforms : tensor The batch of audio signals to resample. Returns ------- The waveforms at the new frequency. """ # Compute output size and initialize batch_size, num_channels, wave_len = waveforms.shape window_size = self.weights.shape[1] tot_output_samp = self._output_samples(wave_len) resampled_waveform = paddle.zeros( (batch_size, num_channels, tot_output_samp)) # self.weights = self.weights.to(waveforms.device) # Check weights are on correct device # if waveforms.device != self.weights.device: # self.weights = self.weights.to(waveforms.device) # eye size: (num_channels, num_channels, 1) eye = paddle.eye(num_channels).unsqueeze(2) # Iterate over the phases in the polyphase filter for i in range(self.first_indices.shape[0]): wave_to_conv = waveforms first_index = int(self.first_indices[i].item()) if first_index >= 0: # trim the signal as the filter will not be applied # before the first_index wave_to_conv = wave_to_conv[..., first_index:] # pad the right of the signal to allow partial convolutions # meaning compute values for partial windows (e.g. end of the # window is outside the signal length) max_index = (tot_output_samp - 1) // self.output_samples end_index = max_index * self.conv_stride + window_size current_wave_len = wave_len - first_index right_padding = max(0, end_index + 1 - current_wave_len) left_padding = max(0, -first_index) wave_to_conv = paddle.nn.functional.pad( wave_to_conv, (left_padding, right_padding), data_format='NCL') conv_wave = paddle.nn.functional.conv1d( x=wave_to_conv, weight=self.weights[i].repeat(num_channels, 1, 1), stride=self.conv_stride, groups=num_channels, ) # we want conv_wave[:, i] to be at # output[:, i + n*conv_transpose_stride] dilated_conv_wave = paddle.nn.functional.conv1d_transpose( conv_wave, eye, stride=self.conv_transpose_stride) # pad dilated_conv_wave so it reaches the output length if needed. left_padding = i previous_padding = left_padding + dilated_conv_wave.shape[-1] right_padding = max(0, tot_output_samp - previous_padding) dilated_conv_wave = paddle.nn.functional.pad( dilated_conv_wave, (left_padding, right_padding), data_format='NCL') dilated_conv_wave = dilated_conv_wave[..., :tot_output_samp] resampled_waveform += dilated_conv_wave return resampled_waveform def _output_samples(self, input_num_samp): """Based on LinearResample::GetNumOutputSamples. LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. (almost directly from torchaudio.compliance.kaldi) Arguments --------- input_num_samp : int The number of samples in each example in the batch. Returns ------- Number of samples in the output waveform. """ # For exact computation, we measure time in "ticks" of 1.0 / tick_freq, # where tick_freq is the least common multiple of samp_in and # samp_out. samp_in = int(self.orig_freq) samp_out = int(self.new_freq) tick_freq = abs(samp_in * samp_out) // math.gcd(samp_in, samp_out) ticks_per_input_period = tick_freq // samp_in # work out the number of ticks in the time interval # [ 0, input_num_samp/samp_in ). interval_length = input_num_samp * ticks_per_input_period if interval_length <= 0: return 0 ticks_per_output_period = tick_freq // samp_out # Get the last output-sample in the closed interval, # i.e. replacing [ ) with [ ]. Note: integer division rounds down. # See http://en.wikipedia.org/wiki/Interval_(mathematics) for an # explanation of the notation. last_output_samp = interval_length // ticks_per_output_period # We need the last output-sample in the open interval, so if it # takes us to the end of the interval exactly, subtract one. if last_output_samp * ticks_per_output_period == interval_length: last_output_samp -= 1 # First output-sample index is zero, so the number of output samples # is the last output-sample plus one. num_output_samp = last_output_samp + 1 return num_output_samp def _indices_and_weights(self, waveforms): """Based on LinearResample::SetIndexesAndWeights Retrieves the weights for resampling as well as the indices in which they are valid. LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. Returns ------- - the place where each filter should start being applied - the filters to be applied to the signal for resampling """ # Lowpass filter frequency depends on smaller of two frequencies min_freq = min(self.orig_freq, self.new_freq) lowpass_cutoff = 0.99 * 0.5 * min_freq assert lowpass_cutoff * 2 <= min_freq window_width = self.lowpass_filter_width / (2.0 * lowpass_cutoff) assert lowpass_cutoff < min(self.orig_freq, self.new_freq) / 2 output_t = paddle.arange(start=0.0, end=self.output_samples) output_t /= self.new_freq min_t = output_t - window_width max_t = output_t + window_width min_input_index = paddle.ceil(min_t * self.orig_freq) max_input_index = paddle.floor(max_t * self.orig_freq) num_indices = max_input_index - min_input_index + 1 max_weight_width = num_indices.max() j = paddle.arange(max_weight_width) input_index = min_input_index.unsqueeze(1) + j.unsqueeze(0) delta_t = (input_index / self.orig_freq) - output_t.unsqueeze(1) weights = paddle.zeros_like(delta_t) inside_window_indices = delta_t.abs() < (window_width) # raised-cosine (Hanning) window with width `window_width` weights[inside_window_indices] = 0.5 * (1 + paddle.cos( 2 * math.pi * lowpass_cutoff / self.lowpass_filter_width * delta_t[inside_window_indices])) t_eq_zero_indices = delta_t == 0.0 t_not_eq_zero_indices = ~t_eq_zero_indices # sinc filter function weights[t_not_eq_zero_indices] *= paddle.sin( 2 * math.pi * lowpass_cutoff * delta_t[t_not_eq_zero_indices]) / ( math.pi * delta_t[t_not_eq_zero_indices]) # limit of the function at t = 0 weights[t_eq_zero_indices] *= 2 * lowpass_cutoff # size (output_samples, max_weight_width) weights /= self.orig_freq self.first_indices = min_input_index self.weights = weights class DropFreq(nn.Layer): """This class drops a random frequency from the signal. The purpose of this class is to teach models to learn to rely on all parts of the signal, not just a few frequency bands. Arguments --------- drop_freq_low : float The low end of frequencies that can be dropped, as a fraction of the sampling rate / 2. drop_freq_high : float The high end of frequencies that can be dropped, as a fraction of the sampling rate / 2. drop_count_low : int The low end of number of frequencies that could be dropped. drop_count_high : int The high end of number of frequencies that could be dropped. drop_width : float The width of the frequency band to drop, as a fraction of the sampling_rate / 2. drop_prob : float The probability that the batch of signals will have a frequency dropped. By default, every batch has frequencies dropped. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> dropper = DropFreq() >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> dropped_signal = dropper(signal.unsqueeze(0)) """ def __init__( self, drop_freq_low=1e-14, drop_freq_high=1, drop_count_low=1, drop_count_high=2, drop_width=0.05, drop_prob=1, ): super().__init__() self.drop_freq_low = drop_freq_low self.drop_freq_high = drop_freq_high self.drop_count_low = drop_count_low self.drop_count_high = drop_count_high self.drop_width = drop_width self.drop_prob = drop_prob def forward(self, waveforms): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ # Don't drop (return early) 1-`drop_prob` portion of the batches dropped_waveform = waveforms.clone() if paddle.rand([1]) > self.drop_prob: return dropped_waveform # Add channels dimension if len(waveforms.shape) == 2: dropped_waveform = dropped_waveform.unsqueeze(-1) # Pick number of frequencies to drop drop_count = paddle.randint( low=self.drop_count_low, high=self.drop_count_high + 1, shape=(1, ), ) # Filter parameters filter_length = 101 pad = filter_length // 2 # Start with delta function drop_filter = paddle.zeros([1, filter_length, 1]) drop_filter[0, pad, 0] = 1 if drop_count.shape == 0: # Pick a frequency to drop drop_range = self.drop_freq_high - self.drop_freq_low drop_frequency = ( paddle.rand(drop_count) * drop_range + self.drop_freq_low) # Subtract each frequency for frequency in drop_frequency: notch_kernel = notch_filter( frequency, filter_length, self.drop_width, ) drop_filter = convolve1d(drop_filter, notch_kernel, pad) # Apply filter dropped_waveform = convolve1d(dropped_waveform, drop_filter, pad) # Remove channels dimension if added return dropped_waveform.squeeze(-1) class DropChunk(nn.Layer): """This class drops portions of the input signal. Using `DropChunk` as an augmentation strategy helps a models learn to rely on all parts of the signal, since it can't expect a given part to be present. Arguments --------- drop_length_low : int The low end of lengths for which to set the signal to zero, in samples. drop_length_high : int The high end of lengths for which to set the signal to zero, in samples. drop_count_low : int The low end of number of times that the signal can be dropped to zero. drop_count_high : int The high end of number of times that the signal can be dropped to zero. drop_start : int The first index for which dropping will be allowed. drop_end : int The last index for which dropping will be allowed. drop_prob : float The probability that the batch of signals will have a portion dropped. By default, every batch has portions dropped. noise_factor : float The factor relative to average amplitude of an utterance to use for scaling the white noise inserted. 1 keeps the average amplitude the same, while 0 inserts all 0's. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> dropper = DropChunk(drop_start=100, drop_end=200, noise_factor=0.) >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> signal = signal.unsqueeze(0) # [batch, time, channels] >>> length = paddle.ones([1]) >>> dropped_signal = dropper(signal, length) >>> float(dropped_signal[:, 150]) 0.0 """ def __init__( self, drop_length_low=100, drop_length_high=1000, drop_count_low=1, drop_count_high=10, drop_start=0, drop_end=None, drop_prob=1, noise_factor=0.0, ): super().__init__() self.drop_length_low = drop_length_low self.drop_length_high = drop_length_high self.drop_count_low = drop_count_low self.drop_count_high = drop_count_high self.drop_start = drop_start self.drop_end = drop_end self.drop_prob = drop_prob self.noise_factor = noise_factor # Validate low < high if drop_length_low > drop_length_high: raise ValueError("Low limit must not be more than high limit") if drop_count_low > drop_count_high: raise ValueError("Low limit must not be more than high limit") # Make sure the length doesn't exceed end - start if drop_end is not None and drop_end >= 0: if drop_start > drop_end: raise ValueError("Low limit must not be more than high limit") drop_range = drop_end - drop_start self.drop_length_low = min(drop_length_low, drop_range) self.drop_length_high = min(drop_length_high, drop_range) def forward(self, waveforms, lengths): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]` """ # Reading input list lengths = (lengths * waveforms.shape[1]).long() batch_size = waveforms.shape[0] dropped_waveform = waveforms.clone() # Don't drop (return early) 1-`drop_prob` portion of the batches if paddle.rand([1]) > self.drop_prob: return dropped_waveform # Store original amplitude for computing white noise amplitude clean_amplitude = compute_amplitude(waveforms, lengths.unsqueeze(1)) # Pick a number of times to drop drop_times = paddle.randint( low=self.drop_count_low, high=self.drop_count_high + 1, shape=(batch_size, ), ) # Iterate batch to set mask for i in range(batch_size): if drop_times[i] == 0: continue # Pick lengths length = paddle.randint( low=self.drop_length_low, high=self.drop_length_high + 1, shape=(drop_times[i], ), ) # Compute range of starting locations start_min = self.drop_start if start_min < 0: start_min += lengths[i] start_max = self.drop_end if start_max is None: start_max = lengths[i] if start_max < 0: start_max += lengths[i] start_max = max(0, start_max - length.max()) # Pick starting locations start = paddle.randint( low=start_min, high=start_max + 1, shape=(drop_times[i], ), ) end = start + length # Update waveform if not self.noise_factor: for j in range(drop_times[i]): dropped_waveform[i, start[j]:end[j]] = 0.0 else: # Uniform distribution of -2 to +2 * avg amplitude should # preserve the average for normalization noise_max = 2 * clean_amplitude[i] * self.noise_factor for j in range(drop_times[i]): # zero-center the noise distribution noise_vec = paddle.rand([length[j]]) noise_vec = 2 * noise_max * noise_vec - noise_max dropped_waveform[i, start[j]:end[j]] = noise_vec return dropped_waveform class SpecAugment(paddle.nn.Layer): """An implementation of the SpecAugment algorithm. Reference: https://arxiv.org/abs/1904.08779 Arguments --------- time_warp : bool Whether applying time warping. time_warp_window : int Time warp window. time_warp_mode : str Interpolation mode for time warping (default "bicubic"). freq_mask : bool Whether applying freq mask. freq_mask_width : int or tuple Freq mask width range. n_freq_mask : int Number of freq mask. time_mask : bool Whether applying time mask. time_mask_width : int or tuple Time mask width range. n_time_mask : int Number of time mask. replace_with_zero : bool If True, replace masked value with 0, else replace masked value with mean of the input tensor. Example ------- >>> aug = SpecAugment() >>> a = paddle.rand([8, 120, 80]) >>> a = aug(a) >>> print(a.shape) paddle.Size([8, 120, 80]) """ def __init__( self, time_warp=True, time_warp_window=5, time_warp_mode="bicubic", freq_mask=True, freq_mask_width=(0, 20), n_freq_mask=2, time_mask=True, time_mask_width=(0, 100), n_time_mask=2, replace_with_zero=True, ): super().__init__() assert ( time_warp or freq_mask or time_mask ), "at least one of time_warp, time_mask, or freq_mask should be applied" self.apply_time_warp = time_warp self.time_warp_window = time_warp_window self.time_warp_mode = time_warp_mode self.freq_mask = freq_mask if isinstance(freq_mask_width, int): freq_mask_width = (0, freq_mask_width) self.freq_mask_width = freq_mask_width self.n_freq_mask = n_freq_mask self.time_mask = time_mask if isinstance(time_mask_width, int): time_mask_width = (0, time_mask_width) self.time_mask_width = time_mask_width self.n_time_mask = n_time_mask self.replace_with_zero = replace_with_zero def forward(self, x): """Takes in input a tensors and returns an augmented one.""" if self.apply_time_warp: x = self.time_warp(x) if self.freq_mask: x = self.mask_along_axis(x, dim=2) if self.time_mask: x = self.mask_along_axis(x, dim=1) return x def time_warp(self, x): """Time warping with paddle.nn.functional.interpolate""" original_size = x.shape window = self.time_warp_window # 2d interpolation requires 4D or higher dimension tensors # x: (Batch, Time, Freq) -> (Batch, 1, Time, Freq) if x.dim() == 3: x = x.unsqueeze(1) time = x.shape[2] if time - window <= window: return x.view(*original_size) # compute center and corresponding window c = paddle.randint(window, time - window, (1, ))[0] w = paddle.randint(c - window, c + window, (1, ))[0] + 1 left = paddle.nn.functional.interpolate( x[:, :, :c], (w, x.shape[3]), mode=self.time_warp_mode, align_corners=True, ) right = paddle.nn.functional.interpolate( x[:, :, c:], (time - w, x.shape[3]), mode=self.time_warp_mode, align_corners=True, ) x[:, :, :w] = left x[:, :, w:] = right return x.view(*original_size) def mask_along_axis(self, x, dim): """Mask along time or frequency axis. Arguments --------- x : tensor Input tensor. dim : int Corresponding dimension to mask. """ original_size = x.shape if x.dim() == 4: x = x.view(-1, x.shape[2], x.shape[3]) batch, time, fea = x.shape if dim == 1: D = time n_mask = self.n_time_mask width_range = self.time_mask_width else: D = fea n_mask = self.n_freq_mask width_range = self.freq_mask_width mask_len = paddle.randint(width_range[0], width_range[1], (batch, n_mask)).unsqueeze(2) mask_pos = paddle.randint(0, max(1, D - mask_len.max()), (batch, n_mask)).unsqueeze(2) # compute masks arange = paddle.arange(end=D).view(1, 1, -1) mask = (mask_pos <= arange) * (arange < (mask_pos + mask_len)) mask = mask.any(axis=1) if dim == 1: mask = mask.unsqueeze(2) else: mask = mask.unsqueeze(1) if self.replace_with_zero: val = 0.0 else: val = x.mean() # same to x.masked_fill_(mask, val) y = paddle.full(x.shape, val, x.dtype) x = paddle.where(mask, y, x) return x.view(*original_size) class TimeDomainSpecAugment(nn.Layer): """A time-domain approximation of the SpecAugment algorithm. This augmentation module implements three augmentations in the time-domain. 1. Drop chunks of the audio (zero amplitude or white noise) 2. Drop frequency bands (with band-drop filters) 3. Speed peturbation (via resampling to slightly different rate) Arguments --------- perturb_prob : float from 0 to 1 The probability that a batch will have speed perturbation applied. drop_freq_prob : float from 0 to 1 The probability that a batch will have frequencies dropped. drop_chunk_prob : float from 0 to 1 The probability that a batch will have chunks dropped. speeds : list of ints A set of different speeds to use to perturb each batch. See ``speechbrain.processing.speech_augmentation.SpeedPerturb`` sample_rate : int Sampling rate of the input waveforms. drop_freq_count_low : int Lowest number of frequencies that could be dropped. drop_freq_count_high : int Highest number of frequencies that could be dropped. drop_chunk_count_low : int Lowest number of chunks that could be dropped. drop_chunk_count_high : int Highest number of chunks that could be dropped. drop_chunk_length_low : int Lowest length of chunks that could be dropped. drop_chunk_length_high : int Highest length of chunks that could be dropped. drop_chunk_noise_factor : float The noise factor used to scale the white noise inserted, relative to the average amplitude of the utterance. Default 0 (no noise inserted). Example ------- >>> inputs = paddle.randn([10, 16000]) >>> feature_maker = TimeDomainSpecAugment(speeds=[80]) >>> feats = feature_maker(inputs, paddle.ones(10)) >>> feats.shape paddle.shape([10, 12800]) """ def __init__( self, perturb_prob=1.0, drop_freq_prob=1.0, drop_chunk_prob=1.0, speeds=[95, 100, 105], sample_rate=16000, drop_freq_count_low=0, drop_freq_count_high=3, drop_chunk_count_low=0, drop_chunk_count_high=5, drop_chunk_length_low=1000, drop_chunk_length_high=2000, drop_chunk_noise_factor=0, ): super().__init__() self.speed_perturb = SpeedPerturb( perturb_prob=perturb_prob, orig_freq=sample_rate, speeds=speeds) self.drop_freq = DropFreq( drop_prob=drop_freq_prob, drop_count_low=drop_freq_count_low, drop_count_high=drop_freq_count_high, ) self.drop_chunk = DropChunk( drop_prob=drop_chunk_prob, drop_count_low=drop_chunk_count_low, drop_count_high=drop_chunk_count_high, drop_length_low=drop_chunk_length_low, drop_length_high=drop_chunk_length_high, noise_factor=drop_chunk_noise_factor, ) def forward(self, waveforms, lengths): """Returns the distorted waveforms. Arguments --------- waveforms : tensor The waveforms to distort """ # Augmentation with paddle.no_grad(): waveforms = self.speed_perturb(waveforms) waveforms = self.drop_freq(waveforms) waveforms = self.drop_chunk(waveforms, lengths) return waveforms