# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """V2 backend for `asr_recog.py` using py:class:`decoders.beam_search.BeamSearch`.""" import json from pathlib import Path import jsonlines import paddle import yaml from yacs.config import CfgNode from .beam_search import BatchBeamSearch from .beam_search import BeamSearch from .scorers.length_bonus import LengthBonus from .scorers.scorer_interface import BatchScorerInterface from .utils import add_results_to_json from deepspeech.exps import dynamic_import_tester from deepspeech.io.reader import LoadInputsAndTargets from deepspeech.models.asr_interface import ASRInterface from deepspeech.utils.log import Log # from espnet.asr.asr_utils import get_model_conf # from espnet.asr.asr_utils import torch_load # from espnet.nets.lm_interface import dynamic_import_lm logger = Log(__name__).getlog() # NOTE: you need this func to generate our sphinx doc def load_trained_model(args): args.nprocs = args.ngpu confs = CfgNode() confs.set_new_allowed(True) confs.merge_from_file(args.model_conf) class_obj = dynamic_import_tester(args.model_name) exp = class_obj(confs, args) with exp.eval(): exp.setup() exp.restore() char_list = exp.args.char_list model = exp.model return model, char_list, exp, confs def recog_v2(args): """Decode with custom models that implements ScorerInterface. Args: args (namespace): The program arguments. See py:func:`bin.asr_recog.get_parser` for details """ logger.warning("experimental API for custom LMs is selected by --api v2") if args.batchsize > 1: raise NotImplementedError("multi-utt batch decoding is not implemented") if args.streaming_mode is not None: raise NotImplementedError("streaming mode is not implemented") if args.word_rnnlm: raise NotImplementedError("word LM is not implemented") # set_deterministic(args) model, char_list, exp, confs = load_trained_model(args) assert isinstance(model, ASRInterface) load_inputs_and_targets = LoadInputsAndTargets( mode="asr", load_output=False, sort_in_input_length=False, preprocess_conf=confs.collator.augmentation_config if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={"train": False}, ) if args.rnnlm: lm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) # NOTE: for a compatibility with less than 0.5.0 version models lm_model_module = getattr(lm_args, "model_module", "default") lm_class = dynamic_import_lm(lm_model_module, lm_args.backend) lm = lm_class(len(char_list), lm_args) torch_load(args.rnnlm, lm) lm.eval() else: lm = None if args.ngram_model: from .scorers.ngram import NgramFullScorer from .scorers.ngram import NgramPartScorer if args.ngram_scorer == "full": ngram = NgramFullScorer(args.ngram_model, char_list) else: ngram = NgramPartScorer(args.ngram_model, char_list) else: ngram = None scorers = model.scorers() # decoder scorers["lm"] = lm scorers["ngram"] = ngram scorers["length_bonus"] = LengthBonus(len(char_list)) weights = dict( decoder=1.0 - args.ctc_weight, ctc=args.ctc_weight, lm=args.lm_weight, ngram=args.ngram_weight, length_bonus=args.penalty, ) beam_search = BeamSearch( beam_size=args.beam_size, vocab_size=len(char_list), weights=weights, scorers=scorers, sos=model.sos, eos=model.eos, token_list=char_list, pre_beam_score_key=None if args.ctc_weight == 1.0 else "full", ) # TODO(karita): make all scorers batchfied if args.batchsize == 1: non_batch = [ k for k, v in beam_search.full_scorers.items() if not isinstance(v, BatchScorerInterface) ] if len(non_batch) == 0: beam_search.__class__ = BatchBeamSearch logger.info("BatchBeamSearch implementation is selected.") else: logger.warning(f"As non-batch scorers {non_batch} are found, " f"fall back to non-batch implementation.") if args.ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") if args.ngpu == 1: device = "gpu:0" else: device = "cpu" paddle.set_device(device) dtype = getattr(paddle, args.dtype) logger.info(f"Decoding device={device}, dtype={dtype}") model.to(device=device, dtype=dtype) model.eval() beam_search.to(device=device, dtype=dtype) beam_search.eval() # read json data js = [] with jsonlines.open(args.recog_json, "r") as reader: for item in reader: js.append(item) # jsonlines to dict, key by 'utt', value by jsonline js = {item['utt']: item for item in js} new_js = {} with paddle.no_grad(): with jsonlines.open(args.result_label, "w") as f: for idx, name in enumerate(js.keys(), 1): logger.info(f"({idx}/{len(js.keys())}) decoding " + name) batch = [(name, js[name])] feat = load_inputs_and_targets(batch)[0][0] logger.info(f'feat: {feat.shape}') enc = model.encode(paddle.to_tensor(feat).to(dtype)) logger.info(f'eout: {enc.shape}') nbest_hyps = beam_search(x=enc, maxlenratio=args.maxlenratio, minlenratio=args.minlenratio) nbest_hyps = [ h.asdict() for h in nbest_hyps[:min(len(nbest_hyps), args.nbest)] ] new_js[name] = add_results_to_json(js[name], nbest_hyps, char_list) item = new_js[name]['output'][0] # 1-best ref = item['text'] rec_text = item['rec_text'].replace('▁', ' ').replace('', '').strip() rec_tokenid = list(map(int, item['rec_tokenid'].split())) f.write({ "utt": name, "refs": [ref], "hyps": [rec_text], "hyps_tokenid": [rec_tokenid], })