# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37 # 执行目录:需说明 CUR_DIR=${PWD} source ../../../tools/venv/bin/activate #cd ** pushd ../../../examples/aishell/s1 # 1 安装该模型需要的依赖 (如需开启优化策略请注明) # 2 拷贝该模型需要数据、预训练模型 source path.sh fp_item_list=(fp32) bs_item=(16) config_path=conf/conformer.yaml seed=0 output=exp/conformer profiler_options=None for fp_item in ${fp_item_list[@]}; do for batch_size in ${bs_item[@]} do rm exp -rf echo "index is speed, 8gpus, run_mode is multi_process, begin, conformer" run_mode=mp ngpu=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${batch_size} ${fp_item} ${CUR_DIR} rm exp -rf echo "index is speed, 1gpus, begin, conformer" run_mode=sp ngpu=1 CUDA_VISIBLE_DEVICES=0 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${batch_size} ${fp_item} ${CUR_DIR} done done popd mkdir -p log bash run_analysis_sp.sh > log/log_sp.out bash run_analysis_mp.sh > log/log_mp.out