############################################ # Network Architecture # ############################################ cmvn_file_type: "json" # encoder related encoder: conformer encoder_conf: output_size: 512 # dimension of attention attention_heads: 8 linear_units: 2048 # the number of units of position-wise feed forward num_blocks: 12 # the number of encoder blocks dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 normalize_before: True use_cnn_module: True cnn_module_kernel: 15 cnn_module_norm: layer_norm activation_type: swish pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn # decoder related decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 # hybrid CTC/attention model_conf: ctc_weight: 0.3 lsm_weight: 0.1 # label smoothing option length_normalized_loss: false # https://yaml.org/type/float.html ########################################### # Data # ########################################### train_manifest: data/train_l/data.list dev_manifest: data/dev/data.list test_manifest: data/test_meeting/data.list ########################################### # Dataloader # ########################################### use_stream_data: True unit_type: 'char' vocab_filepath: data/lang_char/vocab.txt preprocess_config: conf/preprocess.yaml cmvn_file: data/mean_std.json spm_model_prefix: '' feat_dim: 80 stride_ms: 10.0 window_ms: 25.0 dither: 0.1 sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs batch_size: 32 minlen_in: 10 maxlen_in: 1200 # if input length(number of frames) > maxlen-in, data is automatically removed minlen_out: 0 maxlen_out: 150 # if output length(number of tokens) > maxlen-out, data is automatically removed resample_rate: 16000 shuffle_size: 1500 # read number of 'shuffle_size' data as a chunk, shuffle the data in the chunk sort_size: 1000 # read number of 'sort_size' data as a chunk, sort the data in the chunk num_workers: 8 prefetch_factor: 10 dist_sampler: True num_encs: 1 ########################################### # Training # ########################################### n_epoch: 32 accum_grad: 32 global_grad_clip: 5.0 log_interval: 100 checkpoint: kbest_n: 50 latest_n: 5 optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-6 scheduler: warmuplr scheduler_conf: warmup_steps: 5000 lr_decay: 1.0