# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = [ "make_pad_mask", "make_non_pad_mask", "subsequent_mask", "subsequent_chunk_mask", "add_optional_chunk_mask", "mask_finished_scores", "mask_finished_preds" ] def make_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor: """Make mask tensor containing indices of padded part. See description of make_non_pad_mask. Args: lengths (paddle.Tensor): Batch of lengths (B,). Returns: paddle.Tensor: Mask tensor containing indices of padded part. Examples: >>> lengths = [5, 3, 2] >>> make_pad_mask(lengths) masks = [[0, 0, 0, 0 ,0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 1]] """ # (TODO: Hui Zhang): jit not support Tenosr.dim() and Tensor.ndim # assert lengths.dim() == 1 batch_size = int(lengths.shape[0]) max_len = int(lengths.max()) seq_range = paddle.arange(0, max_len, dtype=paddle.int64) seq_range_expand = seq_range.unsqueeze(0).expand([batch_size, max_len]) seq_length_expand = lengths.unsqueeze(-1) mask = seq_range_expand >= seq_length_expand return mask def make_non_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor: """Make mask tensor containing indices of non-padded part. The sequences in a batch may have different lengths. To enable batch computing, padding is need to make all sequence in same size. To avoid the padding part pass value to context dependent block such as attention or convolution , this padding part is masked. This pad_mask is used in both encoder and decoder. 1 for non-padded part and 0 for padded part. Args: lengths (paddle.Tensor): Batch of lengths (B,). Returns: paddle.Tensor: mask tensor containing indices of padded part. Examples: >>> lengths = [5, 3, 2] >>> make_non_pad_mask(lengths) masks = [[1, 1, 1, 1 ,1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0]] """ return ~make_pad_mask(lengths) def subsequent_mask(size: int) -> paddle.Tensor: """Create mask for subsequent steps (size, size). This mask is used only in decoder which works in an auto-regressive mode. This means the current step could only do attention with its left steps. In encoder, fully attention is used when streaming is not necessary and the sequence is not long. In this case, no attention mask is needed. When streaming is need, chunk-based attention is used in encoder. See subsequent_chunk_mask for the chunk-based attention mask. Args: size (int): size of mask Returns: paddle.Tensor: mask, [size, size] Examples: >>> subsequent_mask(3) [[1, 0, 0], [1, 1, 0], [1, 1, 1]] """ ret = paddle.ones([size, size], dtype=paddle.bool) return paddle.tril(ret) def subsequent_chunk_mask( size: int, chunk_size: int, num_left_chunks: int=-1, ) -> paddle.Tensor: """Create mask for subsequent steps (size, size) with chunk size, this is for streaming encoder Args: size (int): size of mask chunk_size (int): size of chunk num_left_chunks (int): number of left chunks <0: use full chunk >=0: use num_left_chunks Returns: paddle.Tensor: mask, [size, size] Examples: >>> subsequent_chunk_mask(4, 2) [[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]] """ ret = paddle.zeros([size, size], dtype=paddle.bool) for i in range(size): if num_left_chunks < 0: start = 0 else: start = max(0, (i // chunk_size - num_left_chunks) * chunk_size) ending = min(size, (i // chunk_size + 1) * chunk_size) ret[i, start:ending] = True return ret def add_optional_chunk_mask(xs: paddle.Tensor, masks: paddle.Tensor, use_dynamic_chunk: bool, use_dynamic_left_chunk: bool, decoding_chunk_size: int, static_chunk_size: int, num_decoding_left_chunks: int): """ Apply optional mask for encoder. Args: xs (paddle.Tensor): padded input, (B, L, D), L for max length mask (paddle.Tensor): mask for xs, (B, 1, L) use_dynamic_chunk (bool): whether to use dynamic chunk or not use_dynamic_left_chunk (bool): whether to use dynamic left chunk for training. decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's 0: default for training, use random dynamic chunk. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. static_chunk_size (int): chunk size for static chunk training/decoding if it's greater than 0, if use_dynamic_chunk is true, this parameter will be ignored num_decoding_left_chunks (int): number of left chunks, this is for decoding, the chunk size is decoding_chunk_size. >=0: use num_decoding_left_chunks <0: use all left chunks Returns: paddle.Tensor: chunk mask of the input xs. """ # Whether to use chunk mask or not if use_dynamic_chunk: max_len = xs.shape[1] if decoding_chunk_size < 0: chunk_size = max_len num_left_chunks = -1 elif decoding_chunk_size > 0: chunk_size = decoding_chunk_size num_left_chunks = num_decoding_left_chunks else: # chunk size is either [1, 25] or full context(max_len). # Since we use 4 times subsampling and allow up to 1s(100 frames) # delay, the maximum frame is 100 / 4 = 25. chunk_size = int(paddle.randint(1, max_len, (1, ))) num_left_chunks = -1 if chunk_size > max_len // 2: chunk_size = max_len else: chunk_size = chunk_size % 25 + 1 if use_dynamic_left_chunk: max_left_chunks = (max_len - 1) // chunk_size num_left_chunks = int( paddle.randint(0, max_left_chunks, (1, ))) chunk_masks = subsequent_chunk_mask(xs.shape[1], chunk_size, num_left_chunks) # (L, L) chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) chunk_masks = masks & chunk_masks # (B, L, L) elif static_chunk_size > 0: num_left_chunks = num_decoding_left_chunks chunk_masks = subsequent_chunk_mask(xs.shape[1], static_chunk_size, num_left_chunks) # (L, L) chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) chunk_masks = masks & chunk_masks # (B, L, L) else: chunk_masks = masks return chunk_masks def mask_finished_scores(score: paddle.Tensor, flag: paddle.Tensor) -> paddle.Tensor: """ If a sequence is finished, we only allow one alive branch. This function aims to give one branch a zero score and the rest -inf score. Args: score (paddle.Tensor): A real value array with shape (batch_size * beam_size, beam_size). flag (paddle.Tensor): A bool array with shape (batch_size * beam_size, 1). Returns: paddle.Tensor: (batch_size * beam_size, beam_size). Examples: flag: tensor([[ True], [False]]) score: tensor([[-0.3666, -0.6664, 0.6019], [-1.1490, -0.2948, 0.7460]]) unfinished: tensor([[False, True, True], [False, False, False]]) finished: tensor([[ True, False, False], [False, False, False]]) return: tensor([[ 0.0000, -inf, -inf], [-1.1490, -0.2948, 0.7460]]) """ beam_size = score.shape[-1] zero_mask = paddle.zeros_like(flag, dtype=paddle.bool) if beam_size > 1: unfinished = paddle.concat( (zero_mask, flag.tile([1, beam_size - 1])), axis=1) finished = paddle.concat( (flag, zero_mask.tile([1, beam_size - 1])), axis=1) else: unfinished = zero_mask finished = flag # infs = paddle.ones_like(score) * -float('inf') # score = paddle.where(unfinished, infs, score) # score = paddle.where(finished, paddle.zeros_like(score), score) score.masked_fill_(unfinished, -float('inf')) score.masked_fill_(finished, 0) return score def mask_finished_preds(pred: paddle.Tensor, flag: paddle.Tensor, eos: int) -> paddle.Tensor: """ If a sequence is finished, all of its branch should be <eos> Args: pred (paddle.Tensor): A int array with shape (batch_size * beam_size, beam_size). flag (paddle.Tensor): A bool array with shape (batch_size * beam_size, 1). Returns: paddle.Tensor: (batch_size * beam_size). """ beam_size = pred.shape[-1] finished = flag.repeat(1, beam_size) return pred.masked_fill_(finished, eos)