# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Text encoder module in VITS. This code is based on https://github.com/jaywalnut310/vits. """ import math from typing import Tuple import paddle from paddle import nn from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask from paddlespeech.t2s.modules.transformer.encoder import ConformerEncoder as Encoder from paddlespeech.utils.initialize import normal_ class TextEncoder(nn.Layer): """Text encoder module in VITS. This is a module of text encoder described in `Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech`_. Instead of the relative positional Transformer, we use conformer architecture as the encoder module, which contains additional convolution layers. .. _`Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech`: https://arxiv.org/abs/2006.04558 """ def __init__( self, vocabs: int, attention_dim: int=192, attention_heads: int=2, linear_units: int=768, blocks: int=6, positionwise_layer_type: str="conv1d", positionwise_conv_kernel_size: int=3, positional_encoding_layer_type: str="rel_pos", self_attention_layer_type: str="rel_selfattn", activation_type: str="swish", normalize_before: bool=True, use_macaron_style: bool=False, use_conformer_conv: bool=False, conformer_kernel_size: int=7, dropout_rate: float=0.1, positional_dropout_rate: float=0.0, attention_dropout_rate: float=0.0, ): """Initialize TextEncoder module. Args: vocabs (int): Vocabulary size. attention_dim (int): Attention dimension. attention_heads (int): Number of attention heads. linear_units (int): Number of linear units of positionwise layers. blocks (int): Number of encoder blocks. positionwise_layer_type (str): Positionwise layer type. positionwise_conv_kernel_size (int): Positionwise layer's kernel size. positional_encoding_layer_type (str): Positional encoding layer type. self_attention_layer_type (str): Self-attention layer type. activation_type (str): Activation function type. normalize_before (bool): Whether to apply LayerNorm before attention. use_macaron_style (bool): Whether to use macaron style components. use_conformer_conv (bool): Whether to use conformer conv layers. conformer_kernel_size (int): Conformer's conv kernel size. dropout_rate (float): Dropout rate. positional_dropout_rate (float): Dropout rate for positional encoding. attention_dropout_rate (float): Dropout rate for attention. """ super().__init__() # store for forward self.attention_dim = attention_dim # define modules self.emb = nn.Embedding(vocabs, attention_dim) self.encoder = Encoder( idim=-1, input_layer=None, attention_dim=attention_dim, attention_heads=attention_heads, linear_units=linear_units, num_blocks=blocks, dropout_rate=dropout_rate, positional_dropout_rate=positional_dropout_rate, attention_dropout_rate=attention_dropout_rate, normalize_before=normalize_before, positionwise_layer_type=positionwise_layer_type, positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style, pos_enc_layer_type=positional_encoding_layer_type, selfattention_layer_type=self_attention_layer_type, activation_type=activation_type, use_cnn_module=use_conformer_conv, cnn_module_kernel=conformer_kernel_size, ) self.proj = nn.Conv1D(attention_dim, attention_dim * 2, 1) self.reset_parameters() def forward( self, x: paddle.Tensor, x_lengths: paddle.Tensor, ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Calculate forward propagation. Args: x (Tensor): Input index tensor (B, T_text). x_lengths (Tensor): Length tensor (B,). Returns: Tensor: Encoded hidden representation (B, attention_dim, T_text). Tensor: Projected mean tensor (B, attention_dim, T_text). Tensor: Projected scale tensor (B, attention_dim, T_text). Tensor: Mask tensor for input tensor (B, 1, T_text). """ x = self.emb(x) * math.sqrt(self.attention_dim) x_mask = make_non_pad_mask(x_lengths).unsqueeze(1) # encoder assume the channel last (B, T_text, attention_dim) # but mask shape shoud be (B, 1, T_text) x, _ = self.encoder(x, x_mask) # convert the channel first (B, attention_dim, T_text) x = paddle.transpose(x, [0, 2, 1]) stats = self.proj(x) * x_mask m, logs = paddle.split(stats, 2, axis=1) return x, m, logs, x_mask def reset_parameters(self): normal_(self.emb.weight, mean=0.0, std=self.attention_dim**-0.5) if self.emb._padding_idx is not None: with paddle.no_grad(): self.emb.weight[self.emb._padding_idx] = 0