# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Positional Encoding Module.""" import math import paddle from paddle import nn class PositionalEncoding(nn.Layer): """Positional encoding. Parameters ---------- d_model : int Embedding dimension. dropout_rate : float Dropout rate. max_len : int Maximum input length. reverse : bool Whether to reverse the input position. type : str dtype of param """ def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32", reverse=False): """Construct an PositionalEncoding object.""" super(PositionalEncoding, self).__init__() self.d_model = d_model self.reverse = reverse self.xscale = math.sqrt(self.d_model) self.dropout = nn.Dropout(p=dropout_rate) self.pe = None self.dtype = dtype self.extend_pe(paddle.expand(paddle.zeros([1]), (1, max_len))) def extend_pe(self, x): """Reset the positional encodings.""" x_shape = paddle.shape(x) pe = paddle.zeros([x_shape[1], self.d_model]) if self.reverse: position = paddle.arange( x_shape[1] - 1, -1, -1.0, dtype=self.dtype).unsqueeze(1) else: position = paddle.arange( 0, x_shape[1], dtype=self.dtype).unsqueeze(1) div_term = paddle.exp( paddle.arange(0, self.d_model, 2, dtype=self.dtype) * -(math.log(10000.0) / self.d_model)) pe[:, 0::2] = paddle.sin(position * div_term) pe[:, 1::2] = paddle.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe def forward(self, x: paddle.Tensor): """Add positional encoding. Parameters ---------- x : paddle.Tensor Input tensor (batch, time, `*`). Returns ---------- paddle.Tensor Encoded tensor (batch, time, `*`). """ self.extend_pe(x) T = paddle.shape(x)[1] x = x * self.xscale + self.pe[:, :T] return self.dropout(x) class ScaledPositionalEncoding(PositionalEncoding): """Scaled positional encoding module. See Sec. 3.2 https://arxiv.org/abs/1809.08895 Parameters ---------- d_model : int Embedding dimension. dropout_rate : float Dropout rate. max_len : int Maximum input length. dtype : str dtype of param """ def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32"): """Initialize class.""" super().__init__( d_model=d_model, dropout_rate=dropout_rate, max_len=max_len, dtype=dtype) x = paddle.ones([1], dtype=self.dtype) self.alpha = paddle.create_parameter( shape=x.shape, dtype=self.dtype, default_initializer=paddle.nn.initializer.Assign(x)) def reset_parameters(self): """Reset parameters.""" self.alpha = paddle.ones([1]) def forward(self, x): """Add positional encoding. Parameters ---------- x : paddle.Tensor Input tensor (batch, time, `*`). Returns ---------- paddle.Tensor Encoded tensor (batch, time, `*`). """ self.extend_pe(x) T = paddle.shape(x)[1] x = x + self.alpha * self.pe[:, :T] return self.dropout(x)