# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from paddlespeech.t2s.data.batch import batch_sequences def speedyspeech_batch_fn(examples): # fields = ["phones", "tones", "num_phones", "num_frames", "feats", "durations"] phones = [np.array(item["phones"], dtype=np.int64) for item in examples] tones = [np.array(item["tones"], dtype=np.int64) for item in examples] feats = [np.array(item["feats"], dtype=np.float32) for item in examples] durations = [ np.array(item["durations"], dtype=np.int64) for item in examples ] num_phones = [ np.array(item["num_phones"], dtype=np.int64) for item in examples ] num_frames = [ np.array(item["num_frames"], dtype=np.int64) for item in examples ] phones = batch_sequences(phones) tones = batch_sequences(tones) feats = batch_sequences(feats) durations = batch_sequences(durations) # convert each batch to paddle.Tensor phones = paddle.to_tensor(phones) tones = paddle.to_tensor(tones) feats = paddle.to_tensor(feats) durations = paddle.to_tensor(durations) num_phones = paddle.to_tensor(num_phones) num_frames = paddle.to_tensor(num_frames) batch = { "phones": phones, "tones": tones, "num_phones": num_phones, "num_frames": num_frames, "feats": feats, "durations": durations, } return batch def fastspeech2_single_spk_batch_fn(examples): # fields = ["text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy"] text = [np.array(item["text"], dtype=np.int64) for item in examples] speech = [np.array(item["speech"], dtype=np.float32) for item in examples] pitch = [np.array(item["pitch"], dtype=np.float32) for item in examples] energy = [np.array(item["energy"], dtype=np.float32) for item in examples] durations = [ np.array(item["durations"], dtype=np.int64) for item in examples ] text_lengths = [ np.array(item["text_lengths"], dtype=np.int64) for item in examples ] speech_lengths = [ np.array(item["speech_lengths"], dtype=np.int64) for item in examples ] text = batch_sequences(text) pitch = batch_sequences(pitch) speech = batch_sequences(speech) durations = batch_sequences(durations) energy = batch_sequences(energy) # convert each batch to paddle.Tensor text = paddle.to_tensor(text) pitch = paddle.to_tensor(pitch) speech = paddle.to_tensor(speech) durations = paddle.to_tensor(durations) energy = paddle.to_tensor(energy) text_lengths = paddle.to_tensor(text_lengths) speech_lengths = paddle.to_tensor(speech_lengths) batch = { "text": text, "text_lengths": text_lengths, "durations": durations, "speech": speech, "speech_lengths": speech_lengths, "pitch": pitch, "energy": energy } return batch def fastspeech2_multi_spk_batch_fn(examples): # fields = ["text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy", "spk_id"] text = [np.array(item["text"], dtype=np.int64) for item in examples] speech = [np.array(item["speech"], dtype=np.float32) for item in examples] pitch = [np.array(item["pitch"], dtype=np.float32) for item in examples] energy = [np.array(item["energy"], dtype=np.float32) for item in examples] durations = [ np.array(item["durations"], dtype=np.int64) for item in examples ] text_lengths = [ np.array(item["text_lengths"], dtype=np.int64) for item in examples ] speech_lengths = [ np.array(item["speech_lengths"], dtype=np.int64) for item in examples ] spk_id = [np.array(item["spk_id"], dtype=np.int64) for item in examples] text = batch_sequences(text) pitch = batch_sequences(pitch) speech = batch_sequences(speech) durations = batch_sequences(durations) energy = batch_sequences(energy) # convert each batch to paddle.Tensor text = paddle.to_tensor(text) pitch = paddle.to_tensor(pitch) speech = paddle.to_tensor(speech) durations = paddle.to_tensor(durations) energy = paddle.to_tensor(energy) text_lengths = paddle.to_tensor(text_lengths) speech_lengths = paddle.to_tensor(speech_lengths) spk_id = paddle.to_tensor(spk_id) batch = { "text": text, "text_lengths": text_lengths, "durations": durations, "speech": speech, "speech_lengths": speech_lengths, "pitch": pitch, "energy": energy, "spk_id": spk_id } return batch def transformer_single_spk_batch_fn(examples): # fields = ["text", "text_lengths", "speech", "speech_lengths"] text = [np.array(item["text"], dtype=np.int64) for item in examples] speech = [np.array(item["speech"], dtype=np.float32) for item in examples] text_lengths = [ np.array(item["text_lengths"], dtype=np.int64) for item in examples ] speech_lengths = [ np.array(item["speech_lengths"], dtype=np.int64) for item in examples ] text = batch_sequences(text) speech = batch_sequences(speech) # convert each batch to paddle.Tensor text = paddle.to_tensor(text) speech = paddle.to_tensor(speech) text_lengths = paddle.to_tensor(text_lengths) speech_lengths = paddle.to_tensor(speech_lengths) batch = { "text": text, "text_lengths": text_lengths, "speech": speech, "speech_lengths": speech_lengths, } return batch