# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generator module in JETS. This code is based on https://github.com/imdanboy/jets. """ import paddle import paddle.nn.functional as F from paddle import nn from paddlespeech.t2s.modules.masked_fill import masked_fill class GaussianUpsampling(nn.Layer): """ Gaussian upsampling with fixed temperature as in: https://arxiv.org/abs/2010.04301 """ def __init__(self, delta=0.1): super().__init__() self.delta = delta def forward(self, hs, ds, h_masks=None, d_masks=None): """ Args: hs (Tensor): Batched hidden state to be expanded (B, T_text, adim) ds (Tensor): Batched token duration (B, T_text) h_masks (Tensor): Mask tensor (B,T_feats) d_masks (Tensor): Mask tensor (B,T_text) Returns: Tensor: Expanded hidden state (B, T_feat, adim) """ B = ds.shape[0] if h_masks is None: T_feats = paddle.to_tensor(ds.sum(), dtype="int32") else: T_feats = h_masks.shape[-1] t = paddle.to_tensor( paddle.arange(0, T_feats).unsqueeze(0).tile([B, 1]), dtype="float32") if h_masks is not None: t = t * paddle.to_tensor(h_masks, dtype="float32") c = ds.cumsum(axis=-1) - ds / 2 energy = -1 * self.delta * (t.unsqueeze(-1) - c.unsqueeze(1))**2 if d_masks is not None: d_masks = ~(d_masks.unsqueeze(1)) d_masks.stop_gradient = True d_masks = d_masks.tile([1, T_feats, 1]) energy = masked_fill(energy, d_masks, -float("inf")) p_attn = F.softmax(energy, axis=2) # (B, T_feats, T_text) hs = paddle.matmul(p_attn, hs) return hs