# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import exp import paddle import paddle.nn.functional as F from paddle import nn def gaussian(window_size, sigma): gauss = paddle.to_tensor([ exp(-(x - window_size // 2)**2 / float(2 * sigma**2)) for x in range(window_size) ]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = paddle.matmul(_1D_window, paddle.transpose( _1D_window, [1, 0])).unsqueeze([0, 1]) window = paddle.expand(_2D_window, [channel, 1, window_size, window_size]) return window def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d( img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d( img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d( img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01**2 C2 = 0.03**2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) \ / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) class SSIM(nn.Layer): def __init__(self, window_size=11, size_average=True): super().__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel) def forward(self, img1, img2): return _ssim(img1, img2, self.window, self.window_size, self.channel, self.size_average) def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.shape window = create_window(window_size, channel) return _ssim(img1, img2, window, window_size, channel, size_average)