# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path import librosa import numpy as np import pandas as pd import tqdm from parakeet.audio import LogMagnitude from parakeet.datasets import LJSpeechMetaData from parakeet.exps.waveflow.config import get_cfg_defaults class Transform(object): def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels, fmin, fmax): self.sample_rate = sample_rate self.n_fft = n_fft self.win_length = win_length self.hop_length = hop_length self.n_mels = n_mels self.fmin = fmin self.fmax = fmax self.spec_normalizer = LogMagnitude(min=1e-5) def __call__(self, example): wav_path, _, _ = example sr = self.sample_rate n_fft = self.n_fft win_length = self.win_length hop_length = self.hop_length n_mels = self.n_mels fmin = self.fmin fmax = self.fmax wav, loaded_sr = librosa.load(wav_path, sr=None) assert loaded_sr == sr, "sample rate does not match, resampling applied" # Pad audio to the right size. frames = int(np.ceil(float(wav.size) / hop_length)) fft_padding = (n_fft - hop_length) // 2 # sound desired_length = frames * hop_length + fft_padding * 2 pad_amount = (desired_length - wav.size) // 2 if wav.size % 2 == 0: wav = np.pad(wav, (pad_amount, pad_amount), mode='reflect') else: wav = np.pad(wav, (pad_amount, pad_amount + 1), mode='reflect') # Normalize audio. wav = wav / np.abs(wav).max() * 0.999 # Compute mel-spectrogram. # Turn center to False to prevent internal padding. spectrogram = librosa.core.stft( wav, hop_length=hop_length, win_length=win_length, n_fft=n_fft, center=False) spectrogram_magnitude = np.abs(spectrogram) # Compute mel-spectrograms. mel_filter_bank = librosa.filters.mel( sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude) # log scale mel_spectrogram. mel_spectrogram = self.spec_normalizer.transform(mel_spectrogram) # Extract the center of audio that corresponds to mel spectrograms. audio = wav[fft_padding:-fft_padding] assert mel_spectrogram.shape[1] * hop_length == audio.size # there is no clipping here return audio, mel_spectrogram def create_dataset(config, input_dir, output_dir): input_dir = Path(input_dir).expanduser() dataset = LJSpeechMetaData(input_dir) output_dir = Path(output_dir).expanduser() output_dir.mkdir(exist_ok=True) transform = Transform(config.sample_rate, config.n_fft, config.win_length, config.hop_length, config.n_mels, config.fmin, config.fmax) file_names = [] for example in tqdm.tqdm(dataset): fname, _, _ = example base_name = os.path.splitext(os.path.basename(fname))[0] wav_dir = output_dir / "wav" mel_dir = output_dir / "mel" wav_dir.mkdir(exist_ok=True) mel_dir.mkdir(exist_ok=True) audio, mel = transform(example) np.save(str(wav_dir / base_name), audio) np.save(str(mel_dir / base_name), mel) file_names.append((base_name, mel.shape[-1], audio.shape[-1])) meta_data = pd.DataFrame.from_records(file_names) meta_data.to_csv( str(output_dir / "metadata.csv"), sep="\t", index=None, header=None) print("saved meta data in to {}".format( os.path.join(output_dir, "metadata.csv"))) print("Done!") if __name__ == "__main__": parser = argparse.ArgumentParser(description="create dataset") parser.add_argument( "--config", type=str, metavar="FILE", help="extra config to overwrite the default config") parser.add_argument( "--input", type=str, help="path of the ljspeech dataset") parser.add_argument( "--output", type=str, help="path to save output dataset") parser.add_argument( "--opts", nargs=argparse.REMAINDER, help="options to overwrite --config file and the default config, passing in KEY VALUE pairs" ) parser.add_argument( "-v", "--verbose", action="store_true", help="print msg") config = get_cfg_defaults() args = parser.parse_args() if args.config: config.merge_from_file(args.config) if args.opts: config.merge_from_list(args.opts) config.freeze() if args.verbose: print(config.data) print(args) create_dataset(config.data, args.input, args.output)