# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil from pathlib import Path import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from visualdl import LogWriter from yacs.config import CfgNode from parakeet.datasets.am_batch_fn import speedyspeech_batch_fn from parakeet.datasets.data_table import DataTable from parakeet.models.speedyspeech import SpeedySpeech from parakeet.models.speedyspeech import SpeedySpeechEvaluator from parakeet.models.speedyspeech import SpeedySpeechUpdater from parakeet.training.extensions.snapshot import Snapshot from parakeet.training.extensions.visualizer import VisualDL from parakeet.training.optimizer import build_optimizers from parakeet.training.seeding import seed_everything from parakeet.training.trainer import Trainer def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly world_size = paddle.distributed.get_world_size() if not paddle.is_compiled_with_cuda(): paddle.set_device("cpu") else: paddle.set_device("gpu") if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) if args.use_relative_path: # if use_relative_path in preprocess, covert it to absolute path here metadata_dir = Path(args.train_metadata).parent for item in train_metadata: item["feats"] = str(metadata_dir / item["feats"]) train_dataset = DataTable( data=train_metadata, fields=[ "phones", "tones", "num_phones", "num_frames", "feats", "durations" ], converters={ "feats": np.load, }, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) if args.use_relative_path: # if use_relative_path in preprocess, covert it to absolute path here metadata_dir = Path(args.dev_metadata).parent for item in dev_metadata: item["feats"] = str(metadata_dir / item["feats"]) dev_dataset = DataTable( data=dev_metadata, fields=[ "phones", "tones", "num_phones", "num_frames", "feats", "durations" ], converters={ "feats": np.load, }, ) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) print("samplers done!") train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=speedyspeech_batch_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, shuffle=False, drop_last=False, batch_size=config.batch_size, collate_fn=speedyspeech_batch_fn, num_workers=config.num_workers) print("dataloaders done!") with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) with open(args.tones_dict, "r") as f: tone_id = [line.strip().split() for line in f.readlines()] tone_size = len(tone_id) print("tone_size:", tone_size) model = SpeedySpeech( vocab_size=vocab_size, tone_size=tone_size, **config["model"]) if world_size > 1: model = DataParallel(model) print("model done!") optimizer = build_optimizers(model, **config["optimizer"]) print("optimizer done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = SpeedySpeechUpdater( model=model, optimizer=optimizer, dataloader=train_dataloader, output_dir=output_dir) trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir) evaluator = SpeedySpeechEvaluator( model, dev_dataloader, output_dir=output_dir) if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) writer = LogWriter(str(output_dir)) trainer.extend(VisualDL(writer), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser( description="Train a Speedyspeech model with sigle speaker dataset.") parser.add_argument("--config", type=str, help="config file.") parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--dev-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--device", type=str, default="gpu", help="device type to use.") parser.add_argument( "--nprocs", type=int, default=1, help="number of processes.") parser.add_argument("--verbose", type=int, default=1, help="verbose.") def str2bool(str): return True if str.lower() == 'true' else False parser.add_argument( "--use-relative-path", type=str2bool, default=False, help="whether use relative path in metadata") parser.add_argument( "--phones-dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--tones-dict", type=str, default=None, help="tone vocabulary file.") # 这里可以多传入 max_epoch 等 args, rest = parser.parse_known_args() if args.device == "cpu" and args.nprocs > 1: raise RuntimeError("Multiprocess training on CPU is not supported.") with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) if rest: extra = [] # to support key=value format for item in rest: # remove "--" item = item[2:] extra.extend(item.split("=", maxsplit=1)) config.merge_from_list(extra) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.nprocs > 1: dist.spawn(train_sp, (args, config), nprocs=args.nprocs) else: train_sp(args, config) if __name__ == "__main__": main()