// Copyright (c) 2012 Jakob Progsch, Václav Zeman // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source // distribution. // this code is from https://github.com/progschj/ThreadPool #ifndef BASE_THREAD_POOL_H #define BASE_THREAD_POOL_H #include #include #include #include #include #include #include #include #include class ThreadPool { public: explicit ThreadPool(size_t); template auto enqueue(F&& f, Args&&... args) -> std::future::type>; ~ThreadPool(); private: // need to keep track of threads so we can join them std::vector workers; // the task queue std::queue> tasks; // synchronization std::mutex queue_mutex; std::condition_variable condition; bool stop; }; // the constructor just launches some amount of workers inline ThreadPool::ThreadPool(size_t threads) : stop(false) { for (size_t i = 0; i < threads; ++i) workers.emplace_back([this] { for (;;) { std::function task; { std::unique_lock lock(this->queue_mutex); this->condition.wait(lock, [this] { return this->stop || !this->tasks.empty(); }); if (this->stop && this->tasks.empty()) return; task = std::move(this->tasks.front()); this->tasks.pop(); } task(); } }); } // add new work item to the pool template auto ThreadPool::enqueue(F&& f, Args&&... args) -> std::future::type> { using return_type = typename std::result_of::type; auto task = std::make_shared>( std::bind(std::forward(f), std::forward(args)...)); std::future res = task->get_future(); { std::unique_lock lock(queue_mutex); // don't allow enqueueing after stopping the pool if (stop) throw std::runtime_error("enqueue on stopped ThreadPool"); tasks.emplace([task]() { (*task)(); }); } condition.notify_one(); return res; } // the destructor joins all threads inline ThreadPool::~ThreadPool() { { std::unique_lock lock(queue_mutex); stop = true; } condition.notify_all(); for (std::thread& worker : workers) worker.join(); } #endif