(简体中文|[English](./README.md))

快速开始 | 快速使用服务 | 教程文档 | 模型列表

------------------------------------------------------------------------------------

**PaddleSpeech** 是基于飞桨 [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) 的语音方向的开源模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型,一些典型的应用示例如下: ##### 语音识别
输入音频 识别结果

I knocked at the door on the ancient side of the building.

我认为跑步最重要的就是给我带来了身体健康。
##### 语音翻译 (英译中)
输入音频 翻译结果

我 在 这栋 建筑 的 古老 门上 敲门。
##### 语音合成
输入文本 合成音频
Life was like a box of chocolates, you never know what you're gonna get.
早上好,今天是2020/10/29,最低温度是-3°C。
季姬寂,集鸡,鸡即棘鸡。棘鸡饥叽,季姬及箕稷济鸡。鸡既济,跻姬笈,季姬忌,急咭鸡,鸡急,继圾几,季姬急,即籍箕击鸡,箕疾击几伎,伎即齑,鸡叽集几基,季姬急极屐击鸡,鸡既殛,季姬激,即记《季姬击鸡记》。
更多合成音频,可以参考 [PaddleSpeech 语音合成音频示例](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html)。 ##### 标点恢复
输入文本 输出文本
今天的天气真不错啊你下午有空吗我想约你一起去吃饭 今天的天气真不错啊!你下午有空吗?我想约你一起去吃饭。
### ⭐ 应用案例 - **[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo): 使用 PaddleSpeech 的语音合成模块生成虚拟人的声音。**
- [PaddleSpeech 示例视频](https://paddlespeech.readthedocs.io/en/latest/demo_video.html) - **[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk): 使用 PaddleSpeech 的语音合成和语音识别从视频中克隆人声。**
### 🔥 热门活动 - 2021.12.21~12.24 4 日直播课: 深度解读 PaddleSpeech 语音技术! **直播回放与课件资料: https://aistudio.baidu.com/aistudio/education/group/info/25130** ### 特性 本项目采用了易用、高效、灵活以及可扩展的实现,旨在为工业应用、学术研究提供更好的支持,实现的功能包含训练、推断以及测试模块,以及部署过程,主要包括 - 📦 **易用性**: 安装门槛低,可使用 [CLI](#quick-start) 快速开始。 - 🏆 **对标 SoTA**: 提供了高速、轻量级模型,且借鉴了最前沿的技术。 - 💯 **基于规则的中文前端**: 我们的前端包含文本正则化和字音转换(G2P)。此外,我们使用自定义语言规则来适应中文语境。 - **多种工业界以及学术界主流功能支持**: - 🛎️ 典型音频任务: 本工具包提供了音频任务如音频分类、语音翻译、自动语音识别、文本转语音、语音合成等任务的实现。 - 🔬 主流模型及数据集: 本工具包实现了参与整条语音任务流水线的各个模块,并且采用了主流数据集如 LibriSpeech、LJSpeech、AIShell、CSMSC,详情请见 [模型列表](#model-list)。 - 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。 ### 近期更新 - 👏🏻 2022.03.28: PaddleSpeech Server 上线! 覆盖了声音分类、语音识别、以及语音合成。 - 👏🏻 2022.03.28: PaddleSpeech CLI 上线声纹验证。 - 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS) Demos on Hugging Face Spaces are available! - 👏🏻 2021.12.10: PaddleSpeech CLI 上线!覆盖了声音分类、语音识别、语音翻译(英译中)以及语音合成。 ### 技术交流群 微信扫描二维码(好友申请通过后回复【语音】)加入官方交流群,获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。
## 安装 我们强烈建议用户在 **Linux** 环境下,*3.7* 以上版本的 *python* 上安装 PaddleSpeech。 目前为止,**Linux** 支持声音分类、语音识别、语音合成和语音翻译四种功能,**Mac OSX、 Windows** 下暂不支持语音翻译功能。 想了解具体安装细节,可以参考[安装文档](./docs/source/install_cn.md)。 ## 快速开始 安装完成后,开发者可以通过命令行快速开始,改变 `--input` 可以尝试用自己的音频或文本测试。 **声音分类** ```shell paddlespeech cls --input input.wav ``` **声纹识别** ```shell paddlespeech vector --task spk --input input_16k.wav ``` **语音识别** ```shell paddlespeech asr --lang zh --input input_16k.wav ``` **语音翻译** (English to Chinese) ```shell paddlespeech st --input input_16k.wav ``` **语音合成** ```shell paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!" --output output.wav ``` - 语音合成的 web demo 已经集成进了 [Huggingface Spaces](https://huggingface.co/spaces). 请参考: [TTS Demo](https://huggingface.co/spaces/akhaliq/paddlespeech) **文本后处理** - 标点恢复 ```bash paddlespeech text --task punc --input 今天的天气真不错啊你下午有空吗我想约你一起去吃饭 ``` **批处理** ``` echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts ``` **Shell管道** ASR + Punc: ``` paddlespeech asr --input ./zh.wav | paddlespeech text --task punc ``` 更多命令行命令请参考 [demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos) > Note: 如果需要训练或者微调,请查看[语音识别](./docs/source/asr/quick_start.md), [语音合成](./docs/source/tts/quick_start.md)。 ## 快速使用服务 安装完成后,开发者可以通过命令行快速使用服务。 **启动服务** ```shell paddlespeech_server start --config_file ./paddlespeech/server/conf/application.yaml ``` **访问语音识别服务** ```shell paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input input_16k.wav ``` **访问语音合成服务** ```shell paddlespeech_client tts --server_ip 127.0.0.1 --port 8090 --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav ``` **访问音频分类服务** ```shell paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav ``` 更多服务相关的命令行使用信息,请参考 [demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_server) ## 模型列表 PaddleSpeech 支持很多主流的模型,并提供了预训练模型,详情请见[模型列表](./docs/source/released_model.md)。 PaddleSpeech 的 **语音转文本** 包含语音识别声学模型、语音识别语言模型和语音翻译, 详情如下:
语音转文本模块类型 数据集 模型种类 链接
语音识别 Aishell DeepSpeech2 RNN + Conv based Models deepspeech2-aishell
Transformer based Attention Models u2.transformer.conformer-aishell
Librispeech Transformer based Attention Models deepspeech2-librispeech / transformer.conformer.u2-librispeech / transformer.conformer.u2-kaldi-librispeech
TIMIT Unified Streaming & Non-streaming Two-pass u2-timit
对齐 THCHS30 MFA mfa-thchs30
语言模型 Ngram 语言模型 kenlm
语音翻译(英译中) TED En-Zh Transformer + ASR MTL transformer-ted
FAT + Transformer + ASR MTL fat-st-ted
PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声学模型和声码器。声学模型和声码器模型如下:
语音合成模块类型 模型种类 数据集 链接
文本前端 tn / g2p
声学模型 Tacotron2 LJSpeech / CSMSC tacotron2-ljspeech / tacotron2-csmsc
Transformer TTS LJSpeech transformer-ljspeech
SpeedySpeech CSMSC speedyspeech-csmsc
FastSpeech2 LJSpeech / VCTK / CSMSC / AISHELL-3 fastspeech2-ljspeech / fastspeech2-vctk / fastspeech2-csmsc / fastspeech2-aishell3
声码器 WaveFlow LJSpeech waveflow-ljspeech
Parallel WaveGAN LJSpeech / VCTK / CSMSC / AISHELL-3 PWGAN-ljspeech / PWGAN-vctk / PWGAN-csmsc / PWGAN-aishell3
Multi Band MelGAN CSMSC Multi Band MelGAN-csmsc
Style MelGAN CSMSC Style MelGAN-csmsc
HiFiGAN LJSpeech / VCTK / CSMSC / AISHELL-3 HiFiGAN-ljspeech / HiFiGAN-vctk / HiFiGAN-csmsc / HiFiGAN-aishell3
WaveRNN CSMSC WaveRNN-csmsc
声音克隆 GE2E Librispeech, etc. ge2e
GE2E + Tactron2 AISHELL-3 ge2e-tactron2-aishell3
GE2E + FastSpeech2 AISHELL-3 ge2e-fastspeech2-aishell3
**声音分类**
任务 数据集 模型种类 链接
声音分类 ESC-50 PANN pann-esc50
**声纹识别**
Task Dataset Model Type Link
Speaker Verification VoxCeleb12 ECAPA-TDNN ecapa-tdnn-voxceleb12
**标点恢复**
任务 数据集 模型种类 链接
标点恢复 IWLST2012_zh Ernie Linear iwslt2012-punc0
## 教程文档 对于 PaddleSpeech 的所关注的任务,以下指南有助于帮助开发者快速入门,了解语音相关核心思想。 - [下载安装](./docs/source/install_cn.md) - [快速开始](#快速开始) - Notebook基础教程 - [声音分类](./docs/tutorial/cls/cls_tutorial.ipynb) - [语音识别](./docs/tutorial/asr/tutorial_transformer.ipynb) - [语音翻译](./docs/tutorial/st/st_tutorial.ipynb) - [声音合成](./docs/tutorial/tts/tts_tutorial.ipynb) - [示例Demo](./demos/README.md) - 进阶文档 - [语音识别自定义训练](./docs/source/asr/quick_start.md) - [简介](./docs/source/asr/models_introduction.md) - [数据准备](./docs/source/asr/data_preparation.md) - [Ngram 语言模型](./docs/source/asr/ngram_lm.md) - [语音合成自定义训练](./docs/source/tts/quick_start.md) - [简介](./docs/source/tts/models_introduction.md) - [进阶用法](./docs/source/tts/advanced_usage.md) - [中文文本前端](./docs/source/tts/zh_text_frontend.md) - [测试语音样本](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html) - [声音分类](./demos/audio_tagging/README_cn.md) - [声纹识别](./demos/speaker_verification/README_cn.md) - [语音翻译](./demos/speech_translation/README_cn.md) - [模型列表](#模型列表) - [语音识别](#语音识别模型) - [语音合成](#语音合成模型) - [声音分类](#声音分类模型) - [技术交流群](#技术交流群) - [欢迎贡献](#欢迎贡献) - [License](#License) 语音合成模块最初被称为 [Parakeet](https://github.com/PaddlePaddle/Parakeet),现在与此仓库合并。如果您对该任务的学术研究感兴趣,请参阅 [TTS 研究概述](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/docs/source/tts#overview)。此外,[模型介绍](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/tts/models_introduction.md) 是了解语音合成流程的一个很好的指南。 ## 引用 要引用 PaddleSpeech 进行研究,请使用以下格式进行引用。 ```text @misc{ppspeech2021, title={PaddleSpeech, a toolkit for audio processing based on PaddlePaddle.}, author={PaddlePaddle Authors}, howpublished = {\url{https://github.com/PaddlePaddle/PaddleSpeech}}, year={2021} } @inproceedings{zheng2021fused, title={Fused acoustic and text encoding for multimodal bilingual pretraining and speech translation}, author={Zheng, Renjie and Chen, Junkun and Ma, Mingbo and Huang, Liang}, booktitle={International Conference on Machine Learning}, pages={12736--12746}, year={2021}, organization={PMLR} } ``` ## 参与 PaddleSpeech 的开发 热烈欢迎您在[Discussions](https://github.com/PaddlePaddle/PaddleSpeech/discussions) 中提交问题,并在[Issues](https://github.com/PaddlePaddle/PaddleSpeech/issues) 中指出发现的 bug。此外,我们非常希望您参与到 PaddleSpeech 的开发中! ### 贡献者

## 致谢 - 非常感谢 [yeyupiaoling](https://github.com/yeyupiaoling)/[PPASR](https://github.com/yeyupiaoling/PPASR)/[PaddlePaddle-DeepSpeech](https://github.com/yeyupiaoling/PaddlePaddle-DeepSpeech)/[VoiceprintRecognition-PaddlePaddle](https://github.com/yeyupiaoling/VoiceprintRecognition-PaddlePaddle)/[AudioClassification-PaddlePaddle](https://github.com/yeyupiaoling/AudioClassification-PaddlePaddle) 多年来的关注和建议,以及在诸多问题上的帮助。 - 非常感谢 [mymagicpower](https://github.com/mymagicpower) 采用PaddleSpeech 对 ASR 的[短语音](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_sdk)及[长语音](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_long_audio_sdk)进行 Java 实现。 - 非常感谢 [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) 采用 PaddleSpeech 语音合成功能实现 Virtual Uploader(VUP)/Virtual YouTuber(VTuber) 虚拟主播。 - 非常感谢 [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) 贡献标点重建相关模型。 - 非常感谢 [kslz](https://github.com/kslz) 补充中文文档。 - 非常感谢 [awmmmm](https://github.com/awmmmm) 提供 fastspeech2 aishell3 conformer 预训练模型。 - 非常感谢 [phecda-xu](https://github.com/phecda-xu)/[PaddleDubbing](https://github.com/phecda-xu/PaddleDubbing) 基于 PaddleSpeech 的 TTS 模型搭建带 GUI 操作界面的配音工具。 - 非常感谢 [jerryuhoo](https://github.com/jerryuhoo)/[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk) 基于 PaddleSpeech 的 TTS GUI 界面和基于 ASR 制作数据集的相关代码。 此外,PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 [references](./docs/source/reference.md)。 ## License PaddleSpeech 在 [Apache-2.0 许可](./LICENSE) 下提供。