# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle import yaml from paddleaudio.utils import logger from paddleaudio.utils import Timer from paddlespeech.kws.exps.mdtc.collate import collate_features from paddlespeech.kws.models.loss import max_pooling_loss from paddlespeech.kws.models.mdtc import KWSModel from paddlespeech.s2t.utils.dynamic_import import dynamic_import # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--cfg_path", type=str, required=True) args = parser.parse_args() # yapf: enable if __name__ == '__main__': nranks = paddle.distributed.get_world_size() if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() local_rank = paddle.distributed.get_rank() args.cfg_path = os.path.abspath(os.path.expanduser(args.cfg_path)) with open(args.cfg_path, 'r') as f: config = yaml.safe_load(f) model_conf = config['model'] data_conf = config['data'] feat_conf = config['feature'] training_conf = config['training'] # Dataset ds_class = dynamic_import(data_conf['dataset']) train_ds = ds_class( data_dir=data_conf['data_dir'], mode='train', **feat_conf) dev_ds = ds_class(data_dir=data_conf['data_dir'], mode='dev', **feat_conf) train_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=training_conf['batch_size'], shuffle=True, drop_last=False) train_loader = paddle.io.DataLoader( train_ds, batch_sampler=train_sampler, num_workers=training_conf['num_workers'], return_list=True, use_buffer_reader=True, collate_fn=collate_features, ) # Model backbone_class = dynamic_import(model_conf['backbone']) backbone = backbone_class(**model_conf['config']) model = KWSModel(backbone=backbone, num_keywords=model_conf['num_keywords']) model = paddle.DataParallel(model) clip = paddle.nn.ClipGradByGlobalNorm(training_conf['grad_clip']) optimizer = paddle.optimizer.Adam( learning_rate=training_conf['learning_rate'], weight_decay=training_conf['weight_decay'], parameters=model.parameters(), grad_clip=clip) criterion = max_pooling_loss steps_per_epoch = len(train_sampler) timer = Timer(steps_per_epoch * training_conf['epochs']) timer.start() for epoch in range(1, training_conf['epochs'] + 1): model.train() avg_loss = 0 num_corrects = 0 num_samples = 0 for batch_idx, batch in enumerate(train_loader): keys, feats, labels, lengths = batch logits = model(feats) loss, corrects, acc = criterion(logits, labels, lengths) loss.backward() optimizer.step() if isinstance(optimizer._learning_rate, paddle.optimizer.lr.LRScheduler): optimizer._learning_rate.step() optimizer.clear_grad() # Calculate loss avg_loss += loss.numpy()[0] # Calculate metrics num_corrects += corrects num_samples += feats.shape[0] timer.count() if (batch_idx + 1 ) % training_conf['log_freq'] == 0 and local_rank == 0: lr = optimizer.get_lr() avg_loss /= training_conf['log_freq'] avg_acc = num_corrects / num_samples print_msg = 'Epoch={}/{}, Step={}/{}'.format( epoch, training_conf['epochs'], batch_idx + 1, steps_per_epoch) print_msg += ' loss={:.4f}'.format(avg_loss) print_msg += ' acc={:.4f}'.format(avg_acc) print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format( lr, timer.timing, timer.eta) logger.train(print_msg) avg_loss = 0 num_corrects = 0 num_samples = 0 if epoch % training_conf[ 'save_freq'] == 0 and batch_idx + 1 == steps_per_epoch and local_rank == 0: dev_sampler = paddle.io.BatchSampler( dev_ds, batch_size=training_conf['batch_size'], shuffle=False, drop_last=False) dev_loader = paddle.io.DataLoader( dev_ds, batch_sampler=dev_sampler, num_workers=training_conf['num_workers'], return_list=True, use_buffer_reader=True, collate_fn=collate_features, ) model.eval() num_corrects = 0 num_samples = 0 with logger.processing('Evaluation on validation dataset'): for batch_idx, batch in enumerate(dev_loader): keys, feats, labels, lengths = batch logits = model(feats) loss, corrects, acc = criterion(logits, labels, lengths) num_corrects += corrects num_samples += feats.shape[0] eval_acc = num_corrects / num_samples print_msg = '[Evaluation result]' print_msg += ' dev_acc={:.4f}'.format(eval_acc) logger.eval(print_msg) # Save model save_dir = os.path.join(training_conf['checkpoint_dir'], 'epoch_{}'.format(epoch)) logger.info('Saving model checkpoint to {}'.format(save_dir)) paddle.save(model.state_dict(), os.path.join(save_dir, 'model.pdparams')) paddle.save(optimizer.state_dict(), os.path.join(save_dir, 'model.pdopt'))