### Prepare the environment Please follow the instructions shown in [here](../../docs/source/install.md) to install the Deepspeech first. ### File list └── benchmark # 模型名 ├── README.md # 运行文档 ├── analysis.py # log解析脚本,每个框架尽量统一,可参考[paddle的analysis.py](https://github.com/mmglove/benchmark/blob/jp_0907/scripts/analysis.py) ├── recoder_mp_bs16_fp32_ngpu1.txt # 单卡数据 ├── recoder_mp_bs16_fp32_ngpu8.txt # 8卡数据 ├── prepare.sh # 竞品PyTorch运行环境搭建 ├── run_benchmark.sh # 运行脚本(包含性能、收敛性) ├── run_analysis_mp.sh # 分析8卡的脚本 ├── run_analysis_sp.sh # 分析单卡的脚本 ├── log │ ├── log_sp.out # 单卡的结果 │ └── log_mp.out # 8卡的结果 └── run.sh # 全量运行脚本 ### The physical environment - 单机(单卡、8卡) - 系统:Ubuntu 16.04.6 LTS - GPU:Tesla V100-SXM2-16GB * 8 - CPU:Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz * 96 - Driver Version: 440.64.00 - 内存:440 GB - CUDA、cudnn Version: cuda10.2-cudnn7 - 多机(32卡) TODO ### Docker 镜像,如: - **镜像版本**: `registry.baidubce.com/paddlepaddle/paddle:2.1.0-gpu-cuda10.2-cudnn7` - **CUDA 版本**: `10.2` - **cuDnn 版本**: `7` ### Prepare the benchmark environment ``` bash prepare.sh ``` ### Start benchmarking ``` bash run.sh ``` ### Analyse the sp ``` bash run_analysis_sp.sh ``` ### Analyse the mp ``` bash run_analysis_mp.sh ``` ### The log ``` {"log_file": "recoder_sp_bs16_fp32_ngpu1.txt", "model_name": "Conformer", "mission_name": "one gpu", "direction_id": 1, "run_mode": "sp", "index": 1, "gpu_num": 1, "FINAL_RESULT": 23.228, "JOB_FAIL_FLAG": 0, "log_with_profiler": null, "profiler_path": null, "UNIT": "sent./sec" } ```