# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Implementation of model from: Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using Convolutional Recurrent Neural Networks" (2019) Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d """ import paddle from paddle import nn class JDCNet(nn.Layer): """ Joint Detection and Classification Network model for singing voice melody. """ def __init__(self, num_class: int=722, seq_len: int=31, leaky_relu_slope: float=0.01): super().__init__() self.seq_len = seq_len self.num_class = num_class # input = (b, 1, 31, 513), b = batch size self.conv_block = nn.Sequential( # out: (b, 64, 31, 513) nn.Conv2D( in_channels=1, out_channels=64, kernel_size=3, padding=1, bias_attr=False), nn.BatchNorm2D(num_features=64), nn.LeakyReLU(leaky_relu_slope), # (b, 64, 31, 513) nn.Conv2D(64, 64, 3, padding=1, bias_attr=False), ) # res blocks # (b, 128, 31, 128) self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 192, 31, 32) self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 256, 31, 8) self.res_block3 = ResBlock(in_channels=192, out_channels=256) # pool block self.pool_block = nn.Sequential( nn.BatchNorm2D(num_features=256), nn.LeakyReLU(leaky_relu_slope), # (b, 256, 31, 2) nn.MaxPool2D(kernel_size=(1, 4)), nn.Dropout(p=0.5), ) # maxpool layers (for auxiliary network inputs) # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2) self.maxpool1 = nn.MaxPool2D(kernel_size=(1, 40)) # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2) self.maxpool2 = nn.MaxPool2D(kernel_size=(1, 20)) # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2) self.maxpool3 = nn.MaxPool2D(kernel_size=(1, 10)) # in = (b, 640, 31, 2), out = (b, 256, 31, 2) self.detector_conv = nn.Sequential( nn.Conv2D( in_channels=640, out_channels=256, kernel_size=1, bias_attr=False), nn.BatchNorm2D(256), nn.LeakyReLU(leaky_relu_slope), nn.Dropout(p=0.5), ) # input: (b, 31, 512) - resized from (b, 256, 31, 2) # output: (b, 31, 512) self.bilstm_classifier = nn.LSTM( input_size=512, hidden_size=256, time_major=False, direction='bidirectional') # input: (b, 31, 512) - resized from (b, 256, 31, 2) # output: (b, 31, 512) self.bilstm_detector = nn.LSTM( input_size=512, hidden_size=256, time_major=False, direction='bidirectional') # input: (b * 31, 512) # output: (b * 31, num_class) self.classifier = nn.Linear( in_features=512, out_features=self.num_class) # input: (b * 31, 512) # output: (b * 31, 2) - binary classifier self.detector = nn.Linear(in_features=512, out_features=2) # initialize weights self.apply(self.init_weights) def get_feature_GAN(self, x: paddle.Tensor): seq_len = x.shape[-2] x = x.astype(paddle.float32).transpose([0, 1, 3, 2] if len(x.shape) == 4 else [0, 2, 1]) convblock_out = self.conv_block(x) resblock1_out = self.res_block1(convblock_out) resblock2_out = self.res_block2(resblock1_out) resblock3_out = self.res_block3(resblock2_out) poolblock_out = self.pool_block[0](resblock3_out) poolblock_out = self.pool_block[1](poolblock_out) return poolblock_out.transpose([0, 1, 3, 2] if len(poolblock_out.shape) == 4 else [0, 2, 1]) def forward(self, x: paddle.Tensor): """ Returns: classification_prediction, detection_prediction sizes: (b, 31, 722), (b, 31, 2) """ ############################### # forward pass for classifier # ############################### x = x.transpose([0, 1, 3, 2] if len(x.shape) == 4 else [0, 2, 1]).astype(paddle.float32) convblock_out = self.conv_block(x) resblock1_out = self.res_block1(convblock_out) resblock2_out = self.res_block2(resblock1_out) resblock3_out = self.res_block3(resblock2_out) poolblock_out = self.pool_block[0](resblock3_out) poolblock_out = self.pool_block[1](poolblock_out) GAN_feature = poolblock_out.transpose([0, 1, 3, 2] if len( poolblock_out.shape) == 4 else [0, 2, 1]) poolblock_out = self.pool_block[2](poolblock_out) # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512) classifier_out = poolblock_out.transpose([0, 2, 1, 3]).reshape( (-1, self.seq_len, 512)) self.bilstm_classifier.flatten_parameters() classifier_out, _ = self.bilstm_classifier( classifier_out) # ignore the hidden states classifier_out = classifier_out.reshape((-1, 512)) # (b * 31, 512) classifier_out = self.classifier(classifier_out) classifier_out = classifier_out.reshape( (-1, self.seq_len, self.num_class)) # (b, 31, num_class) # sizes: (b, 31, 722), (b, 31, 2) # classifier output consists of predicted pitch classes per frame # detector output consists of: (isvoice, notvoice) estimates per frame return paddle.abs(classifier_out.squeeze()), GAN_feature, poolblock_out @staticmethod def init_weights(m): if isinstance(m, nn.Linear): nn.initializer.KaimingUniform()(m.weight) if m.bias is not None: nn.initializer.Constant(0)(m.bias) elif isinstance(m, nn.Conv2D): nn.initializer.XavierNormal()(m.weight) elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell): for p in m.parameters(): if len(p.shape) >= 2: nn.initializer.Orthogonal()(p) else: nn.initializer.Normal()(p) class ResBlock(nn.Layer): def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01): super().__init__() self.downsample = in_channels != out_channels # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper self.pre_conv = nn.Sequential( nn.BatchNorm2D(num_features=in_channels), nn.LeakyReLU(leaky_relu_slope), # apply downsampling on the y axis only nn.MaxPool2D(kernel_size=(1, 2)), ) # conv layers self.conv = nn.Sequential( nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1, bias_attr=False), nn.BatchNorm2D(out_channels), nn.LeakyReLU(leaky_relu_slope), nn.Conv2D( in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1, bias_attr=False), ) # 1 x 1 convolution layer to match the feature dimensions self.conv1by1 = None if self.downsample: self.conv1by1 = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias_attr=False) def forward(self, x: paddle.Tensor): x = self.pre_conv(x) if self.downsample: x = self.conv(x) + self.conv1by1(x) else: x = self.conv(x) + x return x