// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // todo refactor, repalce with gtest #include "base/flags.h" #include "base/log.h" #include "kaldi/feat/wave-reader.h" #include "kaldi/util/kaldi-io.h" #include "kaldi/util/table-types.h" #include "frontend/audio/audio_cache.h" #include "frontend/audio/data_cache.h" #include "frontend/audio/feature_cache.h" #include "frontend/audio/frontend_itf.h" #include "frontend/audio/linear_spectrogram.h" #include "frontend/audio/normalizer.h" DEFINE_string(wav_rspecifier, "", "test wav scp path"); DEFINE_string(feature_wspecifier, "", "output feats wspecifier"); DEFINE_string(cmvn_file, "./cmvn.ark", "read cmvn"); DEFINE_double(streaming_chunk, 0.36, "streaming feature chunk size"); int main(int argc, char* argv[]) { gflags::ParseCommandLineFlags(&argc, &argv, false); google::InitGoogleLogging(argv[0]); kaldi::SequentialTableReader wav_reader( FLAGS_wav_rspecifier); kaldi::BaseFloatMatrixWriter feat_writer(FLAGS_feature_wspecifier); int32 num_done = 0, num_err = 0; // feature pipeline: wave cache --> hanning // window -->linear_spectrogram --> global cmvn -> feat cache std::unique_ptr data_source( new ppspeech::AudioCache(3600 * 1600, true)); ppspeech::LinearSpectrogramOptions opt; opt.frame_opts.frame_length_ms = 20; opt.frame_opts.frame_shift_ms = 10; opt.streaming_chunk = FLAGS_streaming_chunk; opt.frame_opts.dither = 0.0; opt.frame_opts.remove_dc_offset = false; opt.frame_opts.window_type = "hanning"; opt.frame_opts.preemph_coeff = 0.0; LOG(INFO) << "frame length (ms): " << opt.frame_opts.frame_length_ms; LOG(INFO) << "frame shift (ms): " << opt.frame_opts.frame_shift_ms; std::unique_ptr linear_spectrogram( new ppspeech::LinearSpectrogram(opt, std::move(data_source))); std::unique_ptr cmvn( new ppspeech::CMVN(FLAGS_cmvn_file, std::move(linear_spectrogram))); ppspeech::FeatureCacheOptions feat_cache_opts; // the feature cache output feature chunk by chunk. // frame_chunk_size : num frame of a chunk. // frame_chunk_stride: chunk sliding window stride. feat_cache_opts.frame_chunk_stride = 1; feat_cache_opts.frame_chunk_size = 1; ppspeech::FeatureCache feature_cache(feat_cache_opts, std::move(cmvn)); LOG(INFO) << "feat dim: " << feature_cache.Dim(); int sample_rate = 16000; float streaming_chunk = FLAGS_streaming_chunk; int chunk_sample_size = streaming_chunk * sample_rate; LOG(INFO) << "sr: " << sample_rate; LOG(INFO) << "chunk size (s): " << streaming_chunk; LOG(INFO) << "chunk size (sample): " << chunk_sample_size; for (; !wav_reader.Done(); wav_reader.Next()) { std::string utt = wav_reader.Key(); const kaldi::WaveData& wave_data = wav_reader.Value(); LOG(INFO) << "process utt: " << utt; int32 this_channel = 0; kaldi::SubVector waveform(wave_data.Data(), this_channel); int tot_samples = waveform.Dim(); LOG(INFO) << "wav len (sample): " << tot_samples; int sample_offset = 0; std::vector> feats; int feature_rows = 0; while (sample_offset < tot_samples) { int cur_chunk_size = std::min(chunk_sample_size, tot_samples - sample_offset); kaldi::Vector wav_chunk(cur_chunk_size); for (int i = 0; i < cur_chunk_size; ++i) { wav_chunk(i) = waveform(sample_offset + i); } kaldi::Vector features; feature_cache.Accept(wav_chunk); if (cur_chunk_size < chunk_sample_size) { feature_cache.SetFinished(); } bool flag = true; do { flag = feature_cache.Read(&features); feats.push_back(features); feature_rows += features.Dim() / feature_cache.Dim(); } while(flag == true && features.Dim() != 0); sample_offset += cur_chunk_size; } int cur_idx = 0; kaldi::Matrix features(feature_rows, feature_cache.Dim()); for (auto feat : feats) { int num_rows = feat.Dim() / feature_cache.Dim(); for (int row_idx = 0; row_idx < num_rows; ++row_idx) { for (size_t col_idx = 0; col_idx < feature_cache.Dim(); ++col_idx) { features(cur_idx, col_idx) = feat(row_idx * feature_cache.Dim() + col_idx); } ++cur_idx; } } feat_writer.Write(utt, features); feature_cache.Reset(); if (num_done % 50 == 0 && num_done != 0) KALDI_VLOG(2) << "Processed " << num_done << " utterances"; num_done++; } KALDI_LOG << "Done " << num_done << " utterances, " << num_err << " with errors."; return (num_done != 0 ? 0 : 1); }