// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // todo refactor, repalce with gtest #include "base/flags.h" #include "base/log.h" #include "decoder/ctc_beam_search_decoder.h" #include "frontend/audio/data_cache.h" #include "kaldi/util/table-types.h" #include "nnet/decodable.h" #include "nnet/paddle_nnet.h" DEFINE_string(feature_rspecifier, "", "test feature rspecifier"); DEFINE_string(result_wspecifier, "", "test result wspecifier"); DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model"); DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param"); DEFINE_string(dict_file, "vocab.txt", "vocabulary of lm"); DEFINE_string(lm_path, "", "language model"); DEFINE_int32(receptive_field_length, 7, "receptive field of two CNN(kernel=5) downsampling module."); DEFINE_int32(downsampling_rate, 4, "two CNN(kernel=5) module downsampling rate."); DEFINE_string(model_output_names, "save_infer_model/scale_0.tmp_1,save_infer_model/" "scale_1.tmp_1,save_infer_model/scale_2.tmp_1,save_infer_model/" "scale_3.tmp_1", "model output names"); DEFINE_string(model_cache_names, "5-1-1024,5-1-1024", "model cache names"); using kaldi::BaseFloat; using kaldi::Matrix; using std::vector; // test ds2 online decoder by feeding speech feature int main(int argc, char* argv[]) { gflags::ParseCommandLineFlags(&argc, &argv, false); google::InitGoogleLogging(argv[0]); kaldi::SequentialBaseFloatMatrixReader feature_reader( FLAGS_feature_rspecifier); kaldi::TokenWriter result_writer(FLAGS_result_wspecifier); std::string model_graph = FLAGS_model_path; std::string model_params = FLAGS_param_path; std::string dict_file = FLAGS_dict_file; std::string lm_path = FLAGS_lm_path; LOG(INFO) << "model path: " << model_graph; LOG(INFO) << "model param: " << model_params; LOG(INFO) << "dict path: " << dict_file; LOG(INFO) << "lm path: " << lm_path; int32 num_done = 0, num_err = 0; ppspeech::CTCBeamSearchOptions opts; opts.dict_file = dict_file; opts.lm_path = lm_path; ppspeech::CTCBeamSearch decoder(opts); ppspeech::ModelOptions model_opts; model_opts.model_path = model_graph; model_opts.params_path = model_params; model_opts.cache_shape = FLAGS_model_cache_names; model_opts.output_names = FLAGS_model_output_names; std::shared_ptr nnet( new ppspeech::PaddleNnet(model_opts)); std::shared_ptr raw_data(new ppspeech::DataCache()); std::shared_ptr decodable( new ppspeech::Decodable(nnet, raw_data)); int32 chunk_size = FLAGS_receptive_field_length; int32 chunk_stride = FLAGS_downsampling_rate; int32 receptive_field_length = FLAGS_receptive_field_length; LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk stride (frame): " << chunk_stride; LOG(INFO) << "receptive field (frame): " << receptive_field_length; decoder.InitDecoder(); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); kaldi::Matrix feature = feature_reader.Value(); raw_data->SetDim(feature.NumCols()); LOG(INFO) << "process utt: " << utt; LOG(INFO) << "rows: " << feature.NumRows(); LOG(INFO) << "cols: " << feature.NumCols(); int32 row_idx = 0; int32 padding_len = 0; int32 ori_feature_len = feature.NumRows(); if ((feature.NumRows() - chunk_size) % chunk_stride != 0) { padding_len = chunk_stride - (feature.NumRows() - chunk_size) % chunk_stride; feature.Resize(feature.NumRows() + padding_len, feature.NumCols(), kaldi::kCopyData); } int32 num_chunks = (feature.NumRows() - chunk_size) / chunk_stride + 1; for (int chunk_idx = 0; chunk_idx < num_chunks; ++chunk_idx) { kaldi::Vector feature_chunk(chunk_size * feature.NumCols()); int32 feature_chunk_size = 0; if (ori_feature_len > chunk_idx * chunk_stride) { feature_chunk_size = std::min( ori_feature_len - chunk_idx * chunk_stride, chunk_size); } if (feature_chunk_size < receptive_field_length) break; int32 start = chunk_idx * chunk_stride; int32 end = start + chunk_size; for (int row_id = 0; row_id < chunk_size; ++row_id) { kaldi::SubVector tmp(feature, start); kaldi::SubVector f_chunk_tmp( feature_chunk.Data() + row_id * feature.NumCols(), feature.NumCols()); f_chunk_tmp.CopyFromVec(tmp); ++start; } raw_data->Accept(feature_chunk); if (chunk_idx == num_chunks - 1) { raw_data->SetFinished(); } decoder.AdvanceDecode(decodable); } std::string result; result = decoder.GetFinalBestPath(); decodable->Reset(); decoder.Reset(); if (result.empty()) { // the TokenWriter can not write empty string. ++num_err; KALDI_LOG << " the result of " << utt << " is empty"; continue; } KALDI_LOG << " the result of " << utt << " is " << result; result_writer.Write(utt, result); ++num_done; } KALDI_LOG << "Done " << num_done << " utterances, " << num_err << " with errors."; return (num_done != 0 ? 0 : 1); }