# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from collections import OrderedDict from typing import List from typing import Optional from typing import Union import numpy as np import paddle import yaml from paddleaudio import load from paddleaudio.features import LogMelSpectrogram from paddlespeech.utils.dynamic_import import dynamic_import from ..executor import BaseExecutor from ..log import logger from ..utils import cli_register from ..utils import stats_wrapper from .pretrained_models import model_alias from .pretrained_models import pretrained_models __all__ = ['CLSExecutor'] @cli_register( name='paddlespeech.cls', description='Audio classification infer command.') class CLSExecutor(BaseExecutor): def __init__(self): super().__init__() self.model_alias = model_alias self.pretrained_models = pretrained_models self.parser = argparse.ArgumentParser( prog='paddlespeech.cls', add_help=True) self.parser.add_argument( '--input', type=str, default=None, help='Audio file to classify.') self.parser.add_argument( '--model', type=str, default='panns_cnn14', choices=[ tag[:tag.index('-')] for tag in self.pretrained_models.keys() ], help='Choose model type of cls task.') self.parser.add_argument( '--config', type=str, default=None, help='Config of cls task. Use deault config when it is None.') self.parser.add_argument( '--ckpt_path', type=str, default=None, help='Checkpoint file of model.') self.parser.add_argument( '--label_file', type=str, default=None, help='Label file of cls task.') self.parser.add_argument( '--topk', type=int, default=1, help='Return topk scores of classification result.') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') self.parser.add_argument( '-d', '--job_dump_result', action='store_true', help='Save job result into file.') self.parser.add_argument( '-v', '--verbose', action='store_true', help='Increase logger verbosity of current task.') def _init_from_path(self, model_type: str='panns_cnn14', cfg_path: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, label_file: Optional[os.PathLike]=None): """ Init model and other resources from a specific path. """ if hasattr(self, 'model'): logger.info('Model had been initialized.') return if label_file is None or ckpt_path is None: tag = model_type + '-' + '32k' # panns_cnn14-32k self.res_path = self._get_pretrained_path(tag) self.cfg_path = os.path.join( self.res_path, self.pretrained_models[tag]['cfg_path']) self.label_file = os.path.join( self.res_path, self.pretrained_models[tag]['label_file']) self.ckpt_path = os.path.join( self.res_path, self.pretrained_models[tag]['ckpt_path']) else: self.cfg_path = os.path.abspath(cfg_path) self.label_file = os.path.abspath(label_file) self.ckpt_path = os.path.abspath(ckpt_path) # config with open(self.cfg_path, 'r') as f: self._conf = yaml.safe_load(f) # labels self._label_list = [] with open(self.label_file, 'r') as f: for line in f: self._label_list.append(line.strip()) # model model_class = dynamic_import(model_type, self.model_alias) model_dict = paddle.load(self.ckpt_path) self.model = model_class(extract_embedding=False) self.model.set_state_dict(model_dict) self.model.eval() def preprocess(self, audio_file: Union[str, os.PathLike]): """ Input preprocess and return paddle.Tensor stored in self.input. Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet). """ feat_conf = self._conf['feature'] logger.info(feat_conf) waveform, _ = load( file=audio_file, sr=feat_conf['sample_rate'], mono=True, dtype='float32') if isinstance(audio_file, (str, os.PathLike)): logger.info("Preprocessing audio_file:" + audio_file) # Feature extraction feature_extractor = LogMelSpectrogram( sr=feat_conf['sample_rate'], n_fft=feat_conf['n_fft'], hop_length=feat_conf['hop_length'], window=feat_conf['window'], win_length=feat_conf['window_length'], f_min=feat_conf['f_min'], f_max=feat_conf['f_max'], n_mels=feat_conf['n_mels'], ) feats = feature_extractor( paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0))) self._inputs['feats'] = paddle.transpose(feats, [0, 2, 1]).unsqueeze( 1) # [B, N, T] -> [B, 1, T, N] @paddle.no_grad() def infer(self): """ Model inference and result stored in self.output. """ self._outputs['logits'] = self.model(self._inputs['feats']) def _generate_topk_label(self, result: np.ndarray, topk: int) -> str: assert topk <= len( self._label_list), 'Value of topk is larger than number of labels.' topk_idx = (-result).argsort()[:topk] ret = '' for idx in topk_idx: label, score = self._label_list[idx], result[idx] ret += f'{label} {score} ' return ret def postprocess(self, topk: int) -> Union[str, os.PathLike]: """ Output postprocess and return human-readable results such as texts and audio files. """ return self._generate_topk_label( result=self._outputs['logits'].squeeze(0).numpy(), topk=topk) def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) model_type = parser_args.model label_file = parser_args.label_file cfg_path = parser_args.config ckpt_path = parser_args.ckpt_path topk = parser_args.topk device = parser_args.device if not parser_args.verbose: self.disable_task_loggers() task_source = self.get_task_source(parser_args.input) task_results = OrderedDict() has_exceptions = False for id_, input_ in task_source.items(): try: res = self(input_, model_type, cfg_path, ckpt_path, label_file, topk, device) task_results[id_] = res except Exception as e: has_exceptions = True task_results[id_] = f'{e.__class__.__name__}: {e}' self.process_task_results(parser_args.input, task_results, parser_args.job_dump_result) if has_exceptions: return False else: return True @stats_wrapper def __call__(self, audio_file: os.PathLike, model: str='panns_cnn14', config: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, label_file: Optional[os.PathLike]=None, topk: int=1, device: str=paddle.get_device()): """ Python API to call an executor. """ audio_file = os.path.abspath(os.path.expanduser(audio_file)) paddle.set_device(device) self._init_from_path(model, config, ckpt_path, label_file) self.preprocess(audio_file) self.infer() res = self.postprocess(topk) # Retrieve result of cls. return res