#pragma once #include "decoder/ctc_beam_search_opt.h" #include "decoder/ctc_tlg_decoder.h" #include "frontend/feature_pipeline.h" DECLARE_int32(nnet_decoder_chunk); DECLARE_int32(num_left_chunks); DECLARE_double(ctc_weight); DECLARE_double(rescoring_weight); DECLARE_double(reverse_weight); DECLARE_int32(nbest); DECLARE_int32(blank); DECLARE_double(acoustic_scale); DECLARE_double(blank_threshold); DECLARE_string(word_symbol_table); namespace ppspeech { struct DecodeOptions { // chunk_size is the frame number of one chunk after subsampling. // e.g. if subsample rate is 4 and chunk_size = 16, the frames in // one chunk are 67=16*4 + 3, stride is 64=16*4 int chunk_size{16}; int num_left_chunks{-1}; // final_score = rescoring_weight * rescoring_score + ctc_weight * // ctc_score; // rescoring_score = left_to_right_score * (1 - reverse_weight) + // right_to_left_score * reverse_weight // Please note the concept of ctc_scores // in the following two search methods are different. For // CtcPrefixBeamSerch, // it's a sum(prefix) score + context score For CtcWfstBeamSerch, it's a // max(viterbi) path score + context score So we should carefully set // ctc_weight accroding to the search methods. float ctc_weight{0.0}; float rescoring_weight{1.0}; float reverse_weight{0.0}; // CtcEndpointConfig ctc_endpoint_opts; CTCBeamSearchOptions ctc_prefix_search_opts{}; TLGDecoderOptions tlg_decoder_opts{}; static DecodeOptions InitFromFlags() { DecodeOptions decoder_opts; decoder_opts.chunk_size = FLAGS_nnet_decoder_chunk; decoder_opts.num_left_chunks = FLAGS_num_left_chunks; decoder_opts.ctc_weight = FLAGS_ctc_weight; decoder_opts.rescoring_weight = FLAGS_rescoring_weight; decoder_opts.reverse_weight = FLAGS_reverse_weight; decoder_opts.ctc_prefix_search_opts.blank = FLAGS_blank; decoder_opts.ctc_prefix_search_opts.first_beam_size = FLAGS_nbest; decoder_opts.ctc_prefix_search_opts.second_beam_size = FLAGS_nbest; decoder_opts.ctc_prefix_search_opts.word_symbol_table = FLAGS_word_symbol_table; decoder_opts.tlg_decoder_opts = ppspeech::TLGDecoderOptions::InitFromFlags(); LOG(INFO) << "chunk_size: " << decoder_opts.chunk_size; LOG(INFO) << "num_left_chunks: " << decoder_opts.num_left_chunks; LOG(INFO) << "ctc_weight: " << decoder_opts.ctc_weight; LOG(INFO) << "rescoring_weight: " << decoder_opts.rescoring_weight; LOG(INFO) << "reverse_weight: " << decoder_opts.reverse_weight; LOG(INFO) << "blank: " << FLAGS_blank; LOG(INFO) << "first_beam_size: " << FLAGS_nbest; LOG(INFO) << "second_beam_size: " << FLAGS_nbest; return decoder_opts; } }; struct RecognizerResource { // decodable opt kaldi::BaseFloat acoustic_scale{1.0}; kaldi::BaseFloat blank_threshold{0.98}; FeaturePipelineOptions feature_pipeline_opts{}; ModelOptions model_opts{}; DecodeOptions decoder_opts{}; std::shared_ptr nnet; static RecognizerResource InitFromFlags() { RecognizerResource resource; resource.acoustic_scale = FLAGS_acoustic_scale; resource.blank_threshold = FLAGS_blank_threshold; LOG(INFO) << "acoustic_scale: " << resource.acoustic_scale; resource.feature_pipeline_opts = ppspeech::FeaturePipelineOptions::InitFromFlags(); resource.feature_pipeline_opts.assembler_opts.fill_zero = false; LOG(INFO) << "u2 need fill zero be false: " << resource.feature_pipeline_opts.assembler_opts.fill_zero; resource.model_opts = ppspeech::ModelOptions::InitFromFlags(); resource.decoder_opts = ppspeech::DecodeOptions::InitFromFlags(); #ifndef USE_ONNX resource.nnet.reset(new U2Nnet(resource.model_opts)); #else if (resource.model_opts.with_onnx_model){ resource.nnet.reset(new U2OnnxNnet(resource.model_opts)); } else { resource.nnet.reset(new U2Nnet(resource.model_opts)); } #endif return resource; } }; } //namespace ppspeech