# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddlespeech.s2t.models.ds2 import DeepSpeech2Model class TestDeepSpeech2Model(unittest.TestCase): def setUp(self): paddle.set_device('cpu') self.batch_size = 2 self.feat_dim = 161 max_len = 64 # (B, T, D) audio = np.random.randn(self.batch_size, max_len, self.feat_dim) audio_len = np.random.randint(max_len, size=self.batch_size) audio_len[-1] = max_len # (B, U) text = np.array([[1, 2], [1, 2]]) text_len = np.array([2] * self.batch_size) self.audio = paddle.to_tensor(audio, dtype='float32') self.audio_len = paddle.to_tensor(audio_len, dtype='int64') self.text = paddle.to_tensor(text, dtype='int32') self.text_len = paddle.to_tensor(text_len, dtype='int64') def test_ds2_1(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, use_gru=False, rnn_direction="forward", ) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_2(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, use_gru=True, rnn_direction="forward", ) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_3(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, use_gru=False, rnn_direction="bidirect", ) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_4(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, use_gru=True, rnn_direction="bidirect", ) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_5(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, use_gru=False, rnn_direction="forward", ) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) if __name__ == '__main__': unittest.main()