import os from pathlib import Path from typing import Optional import numpy as np from paddlelite.lite import create_paddle_predictor from paddlelite.lite import MobileConfig from .syn_utils import run_frontend # Paddle-Lite def get_lite_predictor(model_dir: Optional[os.PathLike]=None, model_file: Optional[os.PathLike]=None, cpu_threads: int=1): config = MobileConfig() config.set_model_from_file(str(Path(model_dir) / model_file)) predictor = create_paddle_predictor(config) return predictor def get_lite_am_output(input: str, am_predictor, am: str, frontend: object, lang: str='zh', merge_sentences: bool=True, speaker_dict: Optional[os.PathLike]=None, spk_id: int=0, add_blank: bool=False): am_name = am[:am.rindex('_')] am_dataset = am[am.rindex('_') + 1:] get_spk_id = False get_tone_ids = False if am_name == 'speedyspeech': get_tone_ids = True if am_dataset in {"aishell3", "vctk", "mix"} and speaker_dict: get_spk_id = True spk_id = np.array([spk_id]) frontend_dict = run_frontend( frontend=frontend, text=input, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids, lang=lang, add_blank=add_blank, ) if get_tone_ids: tone_ids = frontend_dict['tone_ids'] tones = tone_ids[0].numpy() tones_handle = am_predictor.get_input(1) tones_handle.from_numpy(tones) if get_spk_id: spk_id_handle = am_predictor.get_input(1) spk_id_handle.from_numpy(spk_id) phone_ids = frontend_dict['phone_ids'] phones = phone_ids[0].numpy() phones_handle = am_predictor.get_input(0) phones_handle.from_numpy(phones) am_predictor.run() am_output_handle = am_predictor.get_output(0) am_output_data = am_output_handle.numpy() return am_output_data def get_lite_voc_output(voc_predictor, input): mel_handle = voc_predictor.get_input(0) mel_handle.from_numpy(input) voc_predictor.run() voc_output_handle = voc_predictor.get_output(0) wav = voc_output_handle.numpy() return wav def get_lite_am_sublayer_output(am_sublayer_predictor, input): input_handle = am_sublayer_predictor.get_input(0) input_handle.from_numpy(input) am_sublayer_predictor.run() am_sublayer_handle = am_sublayer_predictor.get_output(0) am_sublayer_output = am_sublayer_handle.numpy() return am_sublayer_output def get_lite_streaming_am_output(input: str, am_encoder_infer_predictor, am_decoder_predictor, am_postnet_predictor, frontend, lang: str='zh', merge_sentences: bool=True): get_tone_ids = False frontend_dict = run_frontend( frontend=frontend, text=input, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids, lang=lang) phone_ids = frontend_dict['phone_ids'] phones = phone_ids[0].numpy() am_encoder_infer_output = get_lite_am_sublayer_output( am_encoder_infer_predictor, input=phones) am_decoder_output = get_lite_am_sublayer_output( am_decoder_predictor, input=am_encoder_infer_output) am_postnet_output = get_lite_am_sublayer_output( am_postnet_predictor, input=np.transpose(am_decoder_output, (0, 2, 1))) am_output_data = am_decoder_output + np.transpose(am_postnet_output, (0, 2, 1)) normalized_mel = am_output_data[0] return normalized_mel