# -------------------------------------------------------- # WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) # Github source: https://github.com/microsoft/unilm/tree/master/wavlm # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq code bases # https://github.com/pytorch/fairseq # -------------------------------------------------------- import math import logging from typing import List, Optional, Tuple import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import LayerNorm from paddle import Tensor from .modules.modules import ( MultiheadAttention, SamePad, get_activation_fn, TransposeLast, GLU_Linear, ) logger = logging.getLogger(__name__) def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True return mask class WavLMConfig: def __init__(self, cfg=None): self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True) self.encoder_layers: int = 12 # num encoder layers in the transformer self.encoder_embed_dim: int = 768 # encoder embedding dimension self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN self.encoder_attention_heads: int = 12 # num encoder attention heads self.activation_fn: str = "gelu" # activation function to use self.layer_norm_first: bool = False # apply layernorm first in the transformer self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...] self.conv_bias: bool = False # include bias in conv encoder self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this self.normalize: bool = False # normalize input to have 0 mean and unit variance during training # dropouts self.dropout: float = 0.1 # dropout probability for the transformer self.attention_dropout: float = 0.1 # dropout probability for attention weights self.activation_dropout: float = 0.0 # dropout probability after activation in FFN self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr) # masking self.mask_length: int = 10 # mask length self.mask_prob: float = 0.65 # probability of replacing a token with mask self.mask_selection: str = "static" # how to choose mask length self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh self.no_mask_overlap: bool = False # whether to allow masks to overlap self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled) # channel masking self.mask_channel_length: int = 10 # length of the mask for features (channels) self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0 self.mask_channel_selection: str = "static" # how to choose mask length for channel masking self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled) # positional embeddings self.conv_pos: int = 128 # number of filters for convolutional positional embeddings self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding # relative position embedding self.relative_position_embedding: bool = True # apply relative position embedding self.num_buckets: int = 320 # number of buckets for relative position embedding self.max_distance: int = 1280 # maximum distance for relative position embedding self.gru_rel_pos: bool = True # apply gated relative position embedding if cfg is not None: self.update(cfg) def update(self, cfg: dict): self.__dict__.update(cfg) class WavLM(nn.Layer): def __init__( self, cfg: WavLMConfig, ) -> None: super().__init__() logger.info(f"WavLM Config: {cfg.__dict__}") self.cfg = cfg feature_enc_layers = eval(cfg.conv_feature_layers) self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.mask_emb = self.create_parameter( shape=[cfg.encoder_embed_dim], default_initializer=nn.initializer.Uniform(), ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) def apply_mask(self, x, padding_mask): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) # mask_indices = torch.from_numpy(mask_indices).to(x.device) mask_indices = paddle.to_tensor(mask_indices, dtype='int64') x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( # torch.from_numpy(mask_channel_indices) paddle.to_tensor(mask_channel_indices, dtype='int64') .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward_padding_mask( self, features: Tensor, padding_mask: Tensor, ) -> Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view( padding_mask.size(0), features.size(1), -1 ) padding_mask = padding_mask.all(-1) return padding_mask def extract_features( self, source: Tensor, padding_mask: Optional[Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ret_layer_results: bool = False, ): if self.feature_grad_mult > 0: features = self.feature_extractor(source) # if self.feature_grad_mult != 1.0: # features = GradMultiply.apply(features, self.feature_grad_mult) else: # with torch.no_grad(): with paddle.no_grad(): features = self.feature_extractor(source) features = features.transpose([0, 2, 1]) # [1, 49, 512] features = self.layer_norm(features) if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) # [1, 49, 768] features = self.dropout_input(features) if mask: x, mask_indices = self.apply_mask( features, padding_mask ) else: x = features # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, layer_results = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 ) # print(f"Debugging: x.shape: {x.shape}, x.mean(): {x.mean()}, x.std(): {x.std()}") res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} feature = res["features"] if ret_conv else res["x"] if ret_layer_results: feature = (feature, res["layer_results"]) return feature, res["padding_mask"] def forward(self, x): return self.extract_features(x)[0] class ConvFeatureExtractionModel(nn.Layer): def __init__( self, conv_layers: List[Tuple[int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, conv_type: str = "default" ): super().__init__() assert mode in {"default", "layer_norm"} def block( n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): def make_conv(): conv = nn.Conv1D(n_in, n_out, k, stride=stride, bias_attr=conv_bias, weight_attr=nn.initializer.KaimingNormal()) # nn.init.kaiming_normal_(conv.weight) return conv assert ( is_layer_norm and is_group_norm ) == False, "layer norm and group norm are exclusive" if is_layer_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.Sequential( TransposeLast(), nn.LayerNorm(normalized_shape=dim, epsilon=1e-5), TransposeLast(), ), nn.GELU(), ) elif is_group_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.GroupNorm(num_groups=dim, num_channels=dim, epsilon=1e-5), nn.GELU(), ) else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) self.conv_type = conv_type if self.conv_type == "default": in_d = 1 self.conv_layers = nn.LayerList() for i, cl in enumerate(conv_layers): assert len(cl) == 3, "invalid conv definition: " + str(cl) (dim, k, stride) = cl self.conv_layers.append( block( in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim elif self.conv_type == "conv2d": in_d = 1 self.conv_layers = nn.LayerList() for i, cl in enumerate(conv_layers): assert len(cl) == 3 (dim, k, stride) = cl self.conv_layers.append( paddle.nn.Conv2D(in_d, dim, k, stride) ) self.conv_layers.append(paddle.nn.ReLU()) in_d = dim elif self.conv_type == "custom": in_d = 1 idim = 80 self.conv_layers = nn.LayerList() for i, cl in enumerate(conv_layers): assert len(cl) == 3 (dim, k, stride) = cl self.conv_layers.append( paddle.nn.Conv2D(in_d, dim, k, stride, padding=1) ) self.conv_layers.append( paddle.nn.LayerNorm([dim, idim]) ) self.conv_layers.append(paddle.nn.ReLU()) in_d = dim if (i + 1) % 2 == 0: self.conv_layers.append( paddle.nn.MaxPool2D(2, stride=2, ceil_mode=True) ) idim = int(math.ceil(idim / 2)) else: pass def forward(self, x, mask=None): # BxT -> BxCxT x = x.unsqueeze(1) if self.conv_type == "custom": for conv in self.conv_layers: if isinstance(conv, nn.LayerNorm): x = x.transpose([0, 2, 1]) x = conv(x).transpose([0, 2, 1]) else: x = conv(x) x = x.transpose([0, 1, 3, 2]).contiguous() x = x.view(x.size(0), -1, x.size(-1)) else: for conv in self.conv_layers: x = conv(x) if self.conv_type == "conv2d": b, c, t, f = x.size() # x = x.transpose(2, 3).contiguous().view(b, c * f, t) x = x.transpose([0, 1, 3, 2]).contiguous().view(b, c * f, t) return x class TransformerEncoder(nn.Layer): def __init__(self, args): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) self.pos_conv = nn.Conv1D( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, weight_attr=nn.initializer.Normal(mean=0, std=std), bias_attr=True ) # nn.init.normal_(self.pos_conv.weight, mean=0, std=std) # nn.init.constant_(self.pos_conv.bias, 0) # self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) # self.pos_conv.weight_g = self.pos_conv.weight_g.unsqueeze(0).unsqueeze(0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) if hasattr(args, "relative_position_embedding"): self.relative_position_embedding = args.relative_position_embedding self.num_buckets = args.num_buckets self.max_distance = args.max_distance else: self.relative_position_embedding = False self.num_buckets = 0 self.max_distance = 0 self.layers = nn.LayerList( [ TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, has_relative_attention_bias=(self.relative_position_embedding and i == 0), num_buckets=self.num_buckets, max_distance=self.max_distance, gru_rel_pos=args.gru_rel_pos, ) for i in range(args.encoder_layers) ] ) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop # self.apply(init_bert_params) def forward(self, x, padding_mask=None, streaming_mask=None, layer=None): x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer) # print("x.shape", x.shape) if self.layer_norm_first and layer is None: x = self.layer_norm(x) return x, layer_results def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None): if padding_mask is not None: x[padding_mask] = 0 x_conv = self.pos_conv(x.transpose([0, 2, 1])) x_conv = x_conv.transpose([0, 2, 1]) x += x_conv if not self.layer_norm_first: x = self.layer_norm(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C # x = x.transpose(0, 1) x = x.transpose([1, 0, 2]) layer_results = [] z = None if tgt_layer is not None: layer_results.append((x, z)) r = None pos_bias = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,self_attn_mask=streaming_mask, pos_bias=pos_bias) if tgt_layer is not None: layer_results.append((x, z)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C # x = x.transpose(0, 1) x = x.transpose([1, 0, 2]) return x, layer_results class TransformerSentenceEncoderLayer(nn.Layer): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, has_relative_attention_bias: bool = True, num_buckets: int = 0, max_distance: int = 0, rescale_init: bool = False, gru_rel_pos: bool = True, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_name = activation_fn self.activation_fn = get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, has_relative_attention_bias=has_relative_attention_bias, num_buckets=num_buckets, max_distance=max_distance, rescale_init=rescale_init, gru_rel_pos=gru_rel_pos, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) if self.activation_name == "glu": self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish") else: self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) def forward( self, x: Tensor, self_attn_mask: Tensor = None, self_attn_padding_mask: Tensor = None, need_weights: bool = False, pos_bias=None ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) x, attn, pos_bias = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False, attn_mask=self_attn_mask, position_bias=pos_bias ) # import pdb; pdb.set_trace() x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) if self.activation_name == "glu": x = self.fc1(x) else: x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn, pos_bias = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=need_weights, attn_mask=self_attn_mask, position_bias=pos_bias ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x if self.activation_name == "glu": x = self.fc1(x) else: x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn, pos_bias