# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import ast import os import sys from typing import List from typing import Optional from typing import Union import numpy as np import paddle import yaml from ..executor import BaseExecutor from ..log import logger from ..utils import cli_register from ..utils import download_and_decompress from ..utils import MODEL_HOME from ..utils import stats_wrapper from paddleaudio import load from paddleaudio.features import LogMelSpectrogram from paddlespeech.s2t.utils.dynamic_import import dynamic_import __all__ = ['CLSExecutor'] pretrained_models = { # The tags for pretrained_models should be "{model_name}[_{dataset}][-{lang}][-...]". # e.g. "conformer_wenetspeech-zh-16k", "transformer_aishell-zh-16k" and "panns_cnn6-32k". # Command line and python api use "{model_name}[_{dataset}]" as --model, usage: # "paddlespeech asr --model conformer_wenetspeech --lang zh --sr 16000 --input ./input.wav" "panns_cnn6-32k": { 'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn6.tar.gz', 'md5': '4cf09194a95df024fd12f84712cf0f9c', 'cfg_path': 'panns.yaml', 'ckpt_path': 'cnn6.pdparams', 'label_file': 'audioset_labels.txt', }, "panns_cnn10-32k": { 'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn10.tar.gz', 'md5': 'cb8427b22176cc2116367d14847f5413', 'cfg_path': 'panns.yaml', 'ckpt_path': 'cnn10.pdparams', 'label_file': 'audioset_labels.txt', }, "panns_cnn14-32k": { 'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn14.tar.gz', 'md5': 'e3b9b5614a1595001161d0ab95edee97', 'cfg_path': 'panns.yaml', 'ckpt_path': 'cnn14.pdparams', 'label_file': 'audioset_labels.txt', }, } model_alias = { "panns_cnn6": "paddlespeech.cls.models.panns:CNN6", "panns_cnn10": "paddlespeech.cls.models.panns:CNN10", "panns_cnn14": "paddlespeech.cls.models.panns:CNN14", } @cli_register( name='paddlespeech.cls', description='Audio classification infer command.') class CLSExecutor(BaseExecutor): def __init__(self): super(CLSExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech.cls', add_help=True) self.parser.add_argument( '--input', type=str, required=True, help='Audio file to classify.') self.parser.add_argument( '--model', type=str, default='panns_cnn14', choices=[tag[:tag.index('-')] for tag in pretrained_models.keys()], help='Choose model type of cls task.') self.parser.add_argument( '--config', type=str, default=None, help='Config of cls task. Use deault config when it is None.') self.parser.add_argument( '--ckpt_path', type=str, default=None, help='Checkpoint file of model.') self.parser.add_argument( '--label_file', type=str, default=None, help='Label file of cls task.') self.parser.add_argument( '--topk', type=int, default=1, help='Return topk scores of classification result.') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') self.parser.add_argument( '--job_dump_result', type=ast.literal_eval, default=False, help='Save job result into file.') def _get_pretrained_path(self, tag: str) -> os.PathLike: """ Download and returns pretrained resources path of current task. """ support_models = list(pretrained_models.keys()) assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format( tag, '\n\t\t'.join(support_models)) res_path = os.path.join(MODEL_HOME, tag) decompressed_path = download_and_decompress(pretrained_models[tag], res_path) decompressed_path = os.path.abspath(decompressed_path) logger.info( 'Use pretrained model stored in: {}'.format(decompressed_path)) return decompressed_path def _init_from_path(self, model_type: str='panns_cnn14', cfg_path: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, label_file: Optional[os.PathLike]=None): """ Init model and other resources from a specific path. """ if hasattr(self, 'model'): logger.info('Model had been initialized.') return if label_file is None or ckpt_path is None: tag = model_type + '-' + '32k' # panns_cnn14-32k self.res_path = self._get_pretrained_path(tag) self.cfg_path = os.path.join(self.res_path, pretrained_models[tag]['cfg_path']) self.label_file = os.path.join(self.res_path, pretrained_models[tag]['label_file']) self.ckpt_path = os.path.join(self.res_path, pretrained_models[tag]['ckpt_path']) else: self.cfg_path = os.path.abspath(cfg_path) self.label_file = os.path.abspath(label_file) self.ckpt_path = os.path.abspath(ckpt_path) # config with open(self.cfg_path, 'r') as f: self._conf = yaml.safe_load(f) # labels self._label_list = [] with open(self.label_file, 'r') as f: for line in f: self._label_list.append(line.strip()) # model model_class = dynamic_import(model_type, model_alias) model_dict = paddle.load(self.ckpt_path) self.model = model_class(extract_embedding=False) self.model.set_state_dict(model_dict) self.model.eval() def preprocess(self, audio_file: Union[str, os.PathLike]): """ Input preprocess and return paddle.Tensor stored in self.input. Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet). """ feat_conf = self._conf['feature'] logger.info(feat_conf) waveform, _ = load( file=audio_file, sr=feat_conf['sample_rate'], mono=True, dtype='float32') logger.info("Preprocessing audio_file:" + audio_file) # Feature extraction feature_extractor = LogMelSpectrogram( sr=feat_conf['sample_rate'], n_fft=feat_conf['n_fft'], hop_length=feat_conf['hop_length'], window=feat_conf['window'], win_length=feat_conf['window_length'], f_min=feat_conf['f_min'], f_max=feat_conf['f_max'], n_mels=feat_conf['n_mels'], ) feats = feature_extractor( paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0))) self._inputs['feats'] = paddle.transpose(feats, [0, 2, 1]).unsqueeze( 1) # [B, N, T] -> [B, 1, T, N] @paddle.no_grad() def infer(self): """ Model inference and result stored in self.output. """ self._outputs['logits'] = self.model(self._inputs['feats']) def _generate_topk_label(self, result: np.ndarray, topk: int) -> str: assert topk <= len( self._label_list), 'Value of topk is larger than number of labels.' topk_idx = (-result).argsort()[:topk] ret = '' for idx in topk_idx: label, score = self._label_list[idx], result[idx] ret += f'{label} {score}\n' return ret def postprocess(self, topk: int) -> Union[str, os.PathLike]: """ Output postprocess and return human-readable results such as texts and audio files. """ return self._generate_topk_label( result=self._outputs['logits'].squeeze(0).numpy(), topk=topk) def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) model_type = parser_args.model label_file = parser_args.label_file cfg_path = parser_args.config ckpt_path = parser_args.ckpt_path input_file = parser_args.input topk = parser_args.topk device = parser_args.device job_dump_result = parser_args.job_dump_result try: if job_dump_result: assert self._is_job_input( input_file ), 'Input file should be a job file(*.job) when `job_dump_result` is True.' job_output_file = os.path.abspath(input_file) + '.done' sys.stdout = open(job_output_file, 'w') print( self(input_file, model_type, cfg_path, ckpt_path, label_file, topk, device)) if job_dump_result: logger.info(f'Results had been saved to: {job_output_file}') return True except Exception as e: logger.exception(e) return False finally: sys.stdout.close() @stats_wrapper def __call__(self, input_file: os.PathLike, model: str='panns_cnn14', config: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, label_file: Optional[os.PathLike]=None, topk: int=1, device: str=paddle.get_device()): """ Python API to call an executor. """ input_file = os.path.abspath(input_file) paddle.set_device(device) self._init_from_path(model, config, ckpt_path, label_file) if self._is_job_input(input_file): # *.job job_outputs = {} job_contents = self._job_preprocess(input_file) for id_, file in job_contents.items(): try: self.preprocess(file) self.infer() job_outputs[id_] = self.postprocess(topk).strip() except Exception as e: job_outputs[id_] = f'{e.__class__.__name__}: {e}' res = self._job_postprecess(job_outputs) else: self.preprocess(input_file) self.infer() res = self.postprocess(topk) # Retrieve result of cls. return res