#! /usr/bin/env bash # grid-search for hyper-parameters in language model CUDA_VISIBLE_DEVICES=0,1,2,3 \ python3 -u ${MAIN_ROOT}tools/tune.py \ --num_batches=-1 \ --batch_size=128 \ --beam_size=500 \ --num_proc_bsearch=12 \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=2048 \ --num_alphas=45 \ --num_betas=8 \ --alpha_from=1.0 \ --alpha_to=3.2 \ --beta_from=0.1 \ --beta_to=0.45 \ --cutoff_prob=1.0 \ --cutoff_top_n=40 \ --use_gru=False \ --use_gpu=True \ --share_rnn_weights=True \ --tune_manifest="data/manifest.dev-clean" \ --mean_std_path="data/mean_std.npz" \ --vocab_path="${MAIN_ROOT}/models/librispeech/vocab.txt" \ --model_path="${MAIN_ROOT}/models/librispeech" \ --lang_model_path="${MAIN_ROOT}/models/lm/common_crawl_00.prune01111.trie.klm" \ --error_rate_type="wer" \ --specgram_type="linear" if [ $? -ne 0 ]; then echo "Failed in tuning!" exit 1 fi exit 0