#!/bin/bash set -eo pipefail . path.sh # attention, please replace the vocab is only for this script. # different acustic model has different vocab ckpt_dir=data/fbank_model unit=$ckpt_dir/data/lang_char/vocab.txt # vocab file, line: char/spm_pice model_dir=$ckpt_dir/exp/deepspeech2_online/checkpoints/ stage=-1 stop_stage=100 corpus=aishell lexicon=data/lexicon.txt # line: word ph0 ... phn, aishell/resource_aishell/lexicon.txt text=data/text # line: utt text, aishell/data_aishell/transcript/aishell_transcript_v0.8.txt . utils/parse_options.sh data=$PWD/data mkdir -p $data if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then if [ ! -f $data/speech.ngram.zh.tar.gz ];then # download ngram pushd $data wget -c http://paddlespeech.bj.bcebos.com/speechx/examples/ngram/zh/speech.ngram.zh.tar.gz tar xvzf speech.ngram.zh.tar.gz popd fi if [ ! -f $ckpt_dir/data/mean_std.json ]; then # download model mkdir -p $ckpt_dir pushd $ckpt_dir wget -c https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr0/WIP1_asr0_deepspeech2_online_wenetspeech_ckpt_1.0.0a.model.tar.gz tar xzfv WIP1_asr0_deepspeech2_online_wenetspeech_ckpt_1.0.0a.model.tar.gz popd fi fi if [ ! -f $unit ]; then echo "$0: No such file $unit" exit 1; fi if ! which ngram-count; then # need srilm install pushd $MAIN_ROOT/tools make srilm.done popd fi mkdir -p data/local/dict if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # Prepare dict # line: char/spm_pices cp $unit data/local/dict/units.txt if [ ! -f $lexicon ];then utils/text_to_lexicon.py --has_key true --text $text --lexicon $lexicon echo "Generate $lexicon from $text" fi # filter by vocab # line: word ph0 ... phn -> line: word char0 ... charn utils/fst/prepare_dict.py \ --unit_file $unit \ --in_lexicon ${lexicon} \ --out_lexicon data/local/dict/lexicon.txt fi lm=data/local/lm mkdir -p $lm if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # Train ngram lm cp $text $lm/text local/aishell_train_lms.sh echo "build LM done." fi # build TLG if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # build T & L utils/fst/compile_lexicon_token_fst.sh \ data/local/dict data/local/tmp data/local/lang # build G & TLG utils/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1; fi aishell_wav_scp=aishell_test.scp nj=40 cmvn=$data/cmvn_fbank.ark wfst=$data/lang_test if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then if [ ! -d $data/test ]; then # download test dataset pushd $data wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/aishell_test.zip unzip aishell_test.zip popd realpath $data/test/*/*.wav > $data/wavlist awk -F '/' '{ print $(NF) }' $data/wavlist | awk -F '.' '{ print $1 }' > $data/utt_id paste $data/utt_id $data/wavlist > $data/$aishell_wav_scp fi ./local/split_data.sh $data $data/$aishell_wav_scp $aishell_wav_scp $nj # convert cmvn format cmvn-json2kaldi --json_file=$ckpt_dir/data/mean_std.json --cmvn_write_path=$cmvn fi wer=aishell_wer label_file=aishell_result export GLOG_logtostderr=1 if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # recognize w/ TLG graph utils/run.pl JOB=1:$nj $data/split${nj}/JOB/check_tlg.log \ recognizer_main \ --wav_rspecifier=scp:$data/split${nj}/JOB/${aishell_wav_scp} \ --cmvn_file=$cmvn \ --model_path=$model_dir/avg_5.jit.pdmodel \ --streaming_chunk=30 \ --use_fbank=true \ --param_path=$model_dir/avg_5.jit.pdiparams \ --word_symbol_table=$wfst/words.txt \ --model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \ --model_cache_shapes="5-1-2048,5-1-2048" \ --graph_path=$wfst/TLG.fst --max_active=7500 \ --acoustic_scale=1.2 \ --result_wspecifier=ark,t:$data/split${nj}/JOB/result_check_tlg cat $data/split${nj}/*/result_check_tlg > $exp/${label_file}_check_tlg utils/compute-wer.py --char=1 --v=1 $text $exp/${label_file}_check_tlg > $exp/${wer}.check_tlg echo "recognizer test have finished!!!" echo "please checkout in ${exp}/${wer}.check_tlg" fi exit 0