# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import paddle from paddle import distributed as dist from paddle.fluid.layers import huber_loss from paddle.nn import functional as F from paddlespeech.t2s.modules.losses import masked_l1_loss from paddlespeech.t2s.modules.losses import ssim from paddlespeech.t2s.modules.losses import weighted_mean from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator from paddlespeech.t2s.training.reporter import report from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater logging.basicConfig( format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s', datefmt='[%Y-%m-%d %H:%M:%S]') logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class SpeedySpeechUpdater(StandardUpdater): def __init__(self, model, optimizer, dataloader, init_state=None, output_dir=None): super().__init__(model, optimizer, dataloader, init_state=None) log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) self.filehandler = logging.FileHandler(str(log_file)) logger.addHandler(self.filehandler) self.logger = logger self.msg = "" def update_core(self, batch): self.msg = "Rank: {}, ".format(dist.get_rank()) losses_dict = {} # spk_id!=None in multiple spk speedyspeech spk_id = batch["spk_id"] if "spk_id" in batch else None decoded, predicted_durations = self.model( text=batch["phones"], tones=batch["tones"], durations=batch["durations"], spk_id=spk_id ) target_mel = batch["feats"] spec_mask = F.sequence_mask( batch["num_frames"], dtype=target_mel.dtype).unsqueeze(-1) text_mask = F.sequence_mask( batch["num_phones"], dtype=predicted_durations.dtype) # spec loss l1_loss = masked_l1_loss(decoded, target_mel, spec_mask) # duration loss target_durations = batch["durations"] target_durations = paddle.maximum( target_durations.astype(predicted_durations.dtype), paddle.to_tensor([1.0])) duration_loss = weighted_mean( huber_loss( predicted_durations, paddle.log(target_durations), delta=1.0), text_mask, ) # ssim loss ssim_loss = 1.0 - ssim((decoded * spec_mask).unsqueeze(1), (target_mel * spec_mask).unsqueeze(1)) loss = l1_loss + ssim_loss + duration_loss optimizer = self.optimizer optimizer.clear_grad() loss.backward() optimizer.step() report("train/loss", float(loss)) report("train/l1_loss", float(l1_loss)) report("train/duration_loss", float(duration_loss)) report("train/ssim_loss", float(ssim_loss)) losses_dict["l1_loss"] = float(l1_loss) losses_dict["duration_loss"] = float(duration_loss) losses_dict["ssim_loss"] = float(ssim_loss) losses_dict["loss"] = float(loss) self.msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_dict.items()) class SpeedySpeechEvaluator(StandardEvaluator): def __init__(self, model, dataloader, output_dir=None): super().__init__(model, dataloader) log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) self.filehandler = logging.FileHandler(str(log_file)) logger.addHandler(self.filehandler) self.logger = logger self.msg = "" def evaluate_core(self, batch): self.msg = "Evaluate: " losses_dict = {} spk_id = batch["spk_id"] if "spk_id" in batch else None decoded, predicted_durations = self.model( text=batch["phones"], tones=batch["tones"], durations=batch["durations"], spk_id=spk_id ) target_mel = batch["feats"] spec_mask = F.sequence_mask( batch["num_frames"], dtype=target_mel.dtype).unsqueeze(-1) text_mask = F.sequence_mask( batch["num_phones"], dtype=predicted_durations.dtype) # spec loss l1_loss = masked_l1_loss(decoded, target_mel, spec_mask) # duration loss target_durations = batch["durations"] target_durations = paddle.maximum( target_durations.astype(predicted_durations.dtype), paddle.to_tensor([1.0])) duration_loss = weighted_mean( huber_loss( predicted_durations, paddle.log(target_durations), delta=1.0), text_mask, ) # ssim loss ssim_loss = 1.0 - ssim((decoded * spec_mask).unsqueeze(1), (target_mel * spec_mask).unsqueeze(1)) loss = l1_loss + ssim_loss + duration_loss # import pdb; pdb.set_trace() report("eval/loss", float(loss)) report("eval/l1_loss", float(l1_loss)) report("eval/duration_loss", float(duration_loss)) report("eval/ssim_loss", float(ssim_loss)) losses_dict["l1_loss"] = float(l1_loss) losses_dict["duration_loss"] = float(duration_loss) losses_dict["ssim_loss"] = float(ssim_loss) losses_dict["loss"] = float(loss) self.msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_dict.items()) self.logger.info(self.msg)