"""Contains the audio segment class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import io import soundfile import scikits.samplerate from scipy import signal import random class AudioSegment(object): """Monaural audio segment abstraction. :param samples: Audio samples [num_samples x num_channels]. :type samples: ndarray.float32 :param sample_rate: Audio sample rate. :type sample_rate: int :raises TypeError: If the sample data type is not float or int. """ def __init__(self, samples, sample_rate): """Create audio segment from samples. Samples are convert float32 internally, with int scaled to [-1, 1]. """ self._samples = self._convert_samples_to_float32(samples) self._sample_rate = sample_rate if self._samples.ndim >= 2: self._samples = np.mean(self._samples, 1) def __eq__(self, other): """Return whether two objects are equal.""" if type(other) is not type(self): return False if self._sample_rate != other._sample_rate: return False if self._samples.shape != other._samples.shape: return False if np.any(self.samples != other._samples): return False return True def __ne__(self, other): """Return whether two objects are unequal.""" return not self.__eq__(other) def __str__(self): """Return human-readable representation of segment.""" return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, " "rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate, self.duration, self.rms_db)) @classmethod def from_file(cls, file): """Create audio segment from audio file. :param filepath: Filepath or file object to audio file. :type filepath: basestring|file :return: Audio segment instance. :rtype: AudioSegment """ samples, sample_rate = soundfile.read(file, dtype='float32') return cls(samples, sample_rate) @classmethod def from_bytes(cls, bytes): """Create audio segment from a byte string containing audio samples. :param bytes: Byte string containing audio samples. :type bytes: str :return: Audio segment instance. :rtype: AudioSegment """ samples, sample_rate = soundfile.read( io.BytesIO(bytes), dtype='float32') return cls(samples, sample_rate) @classmethod def concatenate(cls, *segments): """Concatenate an arbitrary number of audio segments together. :param *segments: Input audio segments. :type *segments: AudioSegment :return: Audio segment instance as concatenating results. :rtype: AudioSegment :raises ValueError: If the number of segments is zero, or if the sample_rate of any two segments does not match. :raises TypeError: If every item in segments is not AudioSegment instance. """ # Perform basic sanity-checks. if len(segments) == 0: raise ValueError("No audio segments are given to concatenate.") sample_rate = segments[0]._sample_rate for seg in segments: if sample_rate != seg._sample_rate: raise ValueError("Can't concatenate segments with " "different sample rates") if type(seg) is not cls: raise TypeError("Only audio segments of the same type " "instance can be concatenated.") samples = np.concatenate([seg.samples for seg in segments]) return cls(samples, sample_rate) def to_wav_file(self, filepath, dtype='float32'): """Save audio segment to disk as wav file. :param filepath: WAV filepath or file object to save the audio segment. :type filepath: basestring|file :param dtype: Subtype for audio file. Options: 'int16', 'int32', 'float32', 'float64'. Default is 'float32'. :type dtype: str :raises TypeError: If dtype is not supported. """ samples = self._convert_samples_from_float32(self._samples, dtype) subtype_map = { 'int16': 'PCM_16', 'int32': 'PCM_32', 'float32': 'FLOAT', 'float64': 'DOUBLE' } soundfile.write( filepath, samples, self._sample_rate, format='WAV', subtype=subtype_map[dtype]) @classmethod def slice_from_file(cls, file, start=None, end=None): """Loads a small section of an audio without having to load the entire file into the memory which can be incredibly wasteful. :param file: Input audio filepath or file object. :type file: basestring|file :param start: Start time in seconds. If start is negative, it wraps around from the end. If not provided, this function reads from the very beginning. :type start: float :param end: End time in seconds. If end is negative, it wraps around from the end. If not provided, the default behvaior is to read to the end of the file. :type end: float :return: AudioSegment instance of the specified slice of the input audio file. :rtype: AudioSegment :raise ValueError: If start or end is incorrectly set, e.g. out of bounds in time. """ sndfile = soundfile.SoundFile(file) sample_rate = sndfile.samplerate duration = float(len(sndfile)) / sample_rate start = 0. if start is None else start end = 0. if end is None else end if start < 0.0: start += duration if end < 0.0: end += duration if start < 0.0: raise ValueError("The slice start position (%f s) is out of " "bounds." % start) if end < 0.0: raise ValueError("The slice end position (%f s) is out of bounds." % end) if start > end: raise ValueError("The slice start position (%f s) is later than " "the slice end position (%f s)." % (start, end)) if end > duration: raise ValueError("The slice end position (%f s) is out of bounds " "(> %f s)" % (end, duration)) start_frame = int(start * sample_rate) end_frame = int(end * sample_rate) sndfile.seek(start_frame) data = sndfile.read(frames=end_frame - start_frame, dtype='float32') return cls(data, sample_rate) @classmethod def make_silence(cls, duration, sample_rate): """Creates a silent audio segment of the given duration and sample rate. :param duration: Length of silence in seconds. :type duration: float :param sample_rate: Sample rate. :type sample_rate: float :return: Silent AudioSegment instance of the given duration. :rtype: AudioSegment """ samples = np.zeros(int(duration * sample_rate)) return cls(samples, sample_rate) def superimposed(self, other): """Add samples from another segment to those of this segment (sample-wise addition, not segment concatenation). :param other: Segment containing samples to be added in. :type other: AudioSegments :raise TypeError: If type of two segments don't match. :raise ValueError: If the sample_rate of two segments not equal, or if the length of segments don't match. """ if type(self) != type(other): raise TypeError("Cannot add segments of different types: %s " "and %s." % (type(self), type(other))) if self._sample_rate != other._sample_rate: raise ValueError("Sample rates must match to add segments.") if len(self._samples) != len(other._samples): raise ValueError("Segment lengths must match to add segments.") self._samples += other._samples def to_bytes(self, dtype='float32'): """Create a byte string containing the audio content. :param dtype: Data type for export samples. Options: 'int16','int32', 'float32', 'float64'. Default is 'float32'. :type dtype: str :return: Byte string containing audio content. :rtype: str """ samples = self._convert_samples_from_float32(self._samples, dtype) return samples.tostring() def apply_gain(self, gain): """Apply gain in decibels to samples. Note that this is an in-place transformation. :param gain: Gain in decibels to apply to samples. :type gain: float """ self._samples *= 10.**(gain / 20.) def change_speed(self, speed_rate): """Change the audio speed by linear interpolation. Note that this is an in-place transformation. :param speed_rate: Rate of speed change: speed_rate > 1.0, speed up the audio; speed_rate = 1.0, unchanged; speed_rate < 1.0, slow down the audio; speed_rate <= 0.0, not allowed, raise ValueError. :type speed_rate: float :raises ValueError: If speed_rate <= 0.0. """ if speed_rate <= 0: raise ValueError("speed_rate should be greater than zero.") old_length = self._samples.shape[0] new_length = int(old_length / speed_rate) old_indices = np.arange(old_length) new_indices = np.linspace(start=0, stop=old_length, num=new_length) self._samples = np.interp(new_indices, old_indices, self._samples) def normalize(self, target_db=-20, max_gain_db=300.0): """Normalize audio to be of the desired RMS value in decibels. Note that this is an in-place transformation. :param target_db: Target RMS value in decibels. This value should be less than 0.0 as 0.0 is full-scale audio. :type target_db: float :param max_gain_db: Max amount of gain in dB that can be applied for normalization. This is to prevent nans when attempting to normalize a signal consisting of all zeros. :type max_gain_db: float :raises ValueError: If the required gain to normalize the segment to the target_db value exceeds max_gain_db. """ gain = target_db - self.rms_db if gain > max_gain_db: raise ValueError( "Unable to normalize segment to %f dB because the " "the probable gain have exceeds max_gain_db (%f dB)" % (target_db, max_gain_db)) self.apply_gain(min(max_gain_db, target_db - self.rms_db)) def normalize_online_bayesian(self, target_db, prior_db, prior_samples, startup_delay=0.0): """Normalize audio using a production-compatible online/causal algorithm. This uses an exponential likelihood and gamma prior to make online estimates of the RMS even when there are very few samples. Note that this is an in-place transformation. :param target_db: Target RMS value in decibels. :type target_bd: float :param prior_db: Prior RMS estimate in decibels. :type prior_db: float :param prior_samples: Prior strength in number of samples. :type prior_samples: float :param startup_delay: Default 0.0s. If provided, this function will accrue statistics for the first startup_delay seconds before applying online normalization. :type startup_delay: float """ # Estimate total RMS online. startup_sample_idx = min(self.num_samples - 1, int(self.sample_rate * startup_delay)) prior_mean_squared = 10.**(prior_db / 10.) prior_sum_of_squares = prior_mean_squared * prior_samples cumsum_of_squares = np.cumsum(self.samples**2) sample_count = np.arange(len(self.num_samples)) + 1 if startup_sample_idx > 0: cumsum_of_squares[:startup_sample_idx] = \ cumsum_of_squares[startup_sample_idx] sample_count[:startup_sample_idx] = \ sample_count[startup_sample_idx] mean_squared_estimate = ((cumsum_of_squares + prior_sum_of_squares) / (sample_count + prior_samples)) rms_estimate_db = 10 * np.log10(mean_squared_estimate) # Compute required time-varying gain. gain_db = target_db - rms_estimate_db self.apply_gain(gain_db) def resample(self, target_sample_rate, quality='sinc_medium'): """Resample the audio to a target sample rate. Note that this is an in-place transformation. :param target_sample_rate: Target sample rate. :type target_sample_rate: int :param quality: One of {'sinc_fastest', 'sinc_medium', 'sinc_best'}. Sets resampling speed/quality tradeoff. See http://www.mega-nerd.com/SRC/api_misc.html#Converters :type quality: str """ resample_ratio = target_sample_rate / self._sample_rate self._samples = scikits.samplerate.resample( self._samples, r=resample_ratio, type=quality) self._sample_rate = target_sample_rate def pad_silence(self, duration, sides='both'): """Pad this audio sample with a period of silence. Note that this is an in-place transformation. :param duration: Length of silence in seconds to pad. :type duration: float :param sides: Position for padding: 'beginning' - adds silence in the beginning; 'end' - adds silence in the end; 'both' - adds silence in both the beginning and the end. :type sides: str :raises ValueError: If sides is not supported. """ if duration == 0.0: return self cls = type(self) silence = self.make_silence(duration, self._sample_rate) if sides == "beginning": padded = cls.concatenate(silence, self) elif sides == "end": padded = cls.concatenate(self, silence) elif sides == "both": padded = cls.concatenate(silence, self, silence) else: raise ValueError("Unknown value for the kwarg %s" % sides) self._samples = padded._samples def subsegment(self, start_sec=None, end_sec=None): """Return new AudioSegment containing audio between given boundaries. :param start_sec: Beginning of subsegment in seconds. :type start_sec: float :param end_sec: End of subsegment in seconds. :type end_sec: float """ start_sec = 0.0 if start_sec is None else start_sec end_sec = self.duration if end_sec is None else end_sec if start_sec < 0.0: start_sec = self.duration + start_sec if end_sec < 0.0: end_sec = self.duration + end_sec start_sample = int(round(start_sec * self._sample_rate)) end_sample = int(round(end_sec * self._sample_rate)) self._samples = self._samples[start_sample:end_sample] def random_subsegment(self, subsegment_length, rng=None): """Return a random subsegment of a specified length in seconds. :param subsegment_length: Subsegment length in seconds. :type subsegment_length: float :param rng: Random number generator state. :type rng: random.Random :raises ValueError: If the length of subsegment greater than origineal segemnt. """ rng = random.Random() if rng is None else rng if subsegment_length > self.duration: raise ValueError("Length of subsegment must not be greater " "than original segment.") start_time = rng.uniform(0.0, self.duration - subsegment_length) self.subsegment(start_time, start_time + subsegment_length) def convolve(self, impulse_segment, allow_resample=False): """Convolve this audio segment with the given impulse_segment. Note that this is an in-place transformation. :param impulse_segment: Impulse response segments. :type impulse_segment: AudioSegment :param allow_resample: Indicates whether resampling is allowed when the impulse_segment has a different sample rate from this signal. :type allow_resample: bool :raises ValueError: If the sample rate is not match between two audio segments and resample is not allowed. """ if allow_resample and self.sample_rate != impulse_segment.sample_rate: impulse_segment = impulse_segment.resample(self.sample_rate) if self.sample_rate != impulse_segment.sample_rate: raise ValueError("Impulse segment's sample rate (%d Hz) is not" "equal to base signal sample rate (%d Hz)." % (impulse_segment.sample_rate, self.sample_rate)) samples = signal.fftconvolve(self.samples, impulse_segment.samples, "full") self._samples = samples def convolve_and_normalize(self, impulse_segment, allow_resample=False): """Convolve and normalize the resulting audio segment so that it has the same average power as the input signal. :param impulse_segment: Impulse response segments. :type impulse_segment: AudioSegment :param allow_resample: Indicates whether resampling is allowed when the impulse_segment has a different sample rate from this signal. :type allow_resample: bool """ target_db = self.rms_db self.convolve(impulse_segment, allow_resample=allow_resample) self.normalize(target_db) def add_noise(self, noise, snr_dB, allow_downsampling=False, max_gain_db=300.0, rng=None): """Adds the given noise segment at a specific signal-to-noise ratio. If the noise segment is longer than this segment, a random subsegment of matching length is sampled from it and used instead. :param noise: Noise signal to add. :type noise: AudioSegment :param snr_dB: Signal-to-Noise Ratio, in decibels. :type snr_dB: float :param allow_downsampling: Whether to allow the noise signal to be downsampled to match the base signal sample rate. :type allow_downsampling: bool :param max_gain_db: Maximum amount of gain to apply to noise signal before adding it in. This is to prevent attempting to apply infinite gain to a zero signal. :type max_gain_db: float :param rng: Random number generator state. :type rng: None|random.Random :raises ValueError: If the sample rate does not match between the two audio segments and resample is not allowed, or if the duration of noise segments is shorter than original audio segments. """ rng = random.Random() if rng is None else rng if allow_downsampling and noise.sample_rate > self.sample_rate: noise = noise.resample(self.sample_rate) if noise.sample_rate != self.sample_rate: raise ValueError("Noise sample rate (%d Hz) is not equal to base " "signal sample rate (%d Hz)." % (noise.sample_rate, self.sample_rate)) if noise.duration < self.duration: raise ValueError("Noise signal (%f sec) must be at least as long as" " base signal (%f sec)." % (noise.duration, self.duration)) noise_gain_db = min(self.rms_db - noise.rms_db - snr_dB, max_gain_db) noise.random_subsegment(self.duration, rng=rng) noise.apply_gain(noise_gain_db) self.superimposed(noise) @property def samples(self): """Return audio samples. :return: Audio samples. :rtype: ndarray """ return self._samples.copy() @property def sample_rate(self): """Return audio sample rate. :return: Audio sample rate. :rtype: int """ return self._sample_rate @property def num_samples(self): """Return number of samples. :return: Number of samples. :rtype: int """ return self._samples.shape[0] @property def duration(self): """Return audio duration. :return: Audio duration in seconds. :rtype: float """ return self._samples.shape[0] / float(self._sample_rate) @property def rms_db(self): """Return root mean square energy of the audio in decibels. :return: Root mean square energy in decibels. :rtype: float """ # square root => multiply by 10 instead of 20 for dBs mean_square = np.mean(self._samples**2) return 10 * np.log10(mean_square) def _convert_samples_to_float32(self, samples): """Convert sample type to float32. Audio sample type is usually integer or float-point. Integers will be scaled to [-1, 1] in float32. """ float32_samples = samples.astype('float32') if samples.dtype in np.sctypes['int']: bits = np.iinfo(samples.dtype).bits float32_samples *= (1. / 2**(bits - 1)) elif samples.dtype in np.sctypes['float']: pass else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return float32_samples def _convert_samples_from_float32(self, samples, dtype): """Convert sample type from float32 to dtype. Audio sample type is usually integer or float-point. For integer type, float32 will be rescaled from [-1, 1] to the maximum range supported by the integer type. This is for writing a audio file. """ dtype = np.dtype(dtype) output_samples = samples.copy() if dtype in np.sctypes['int']: bits = np.iinfo(dtype).bits output_samples *= (2**(bits - 1) / 1.) min_val = np.iinfo(dtype).min max_val = np.iinfo(dtype).max output_samples[output_samples > max_val] = max_val output_samples[output_samples < min_val] = min_val elif samples.dtype in np.sctypes['float']: min_val = np.finfo(dtype).min max_val = np.finfo(dtype).max output_samples[output_samples > max_val] = max_val output_samples[output_samples < min_val] = min_val else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return output_samples.astype(dtype)