# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) import librosa import numpy as np import paddle from python_speech_features import logfbank import paddleaudio.compliance.kaldi as kaldi def stft(x, n_fft, n_shift, win_length=None, window="hann", center=True, pad_mode="reflect"): # x: [Time, Channel] if x.ndim == 1: single_channel = True # x: [Time] -> [Time, Channel] x = x[:, None] else: single_channel = False x = x.astype(np.float32) # FIXME(kamo): librosa.stft can't use multi-channel? # x: [Time, Channel, Freq] x = np.stack( [ librosa.stft( y=x[:, ch], n_fft=n_fft, hop_length=n_shift, win_length=win_length, window=window, center=center, pad_mode=pad_mode, ).T for ch in range(x.shape[1]) ], axis=1, ) if single_channel: # x: [Time, Channel, Freq] -> [Time, Freq] x = x[:, 0] return x def istft(x, n_shift, win_length=None, window="hann", center=True): # x: [Time, Channel, Freq] if x.ndim == 2: single_channel = True # x: [Time, Freq] -> [Time, Channel, Freq] x = x[:, None, :] else: single_channel = False # x: [Time, Channel] x = np.stack( [ librosa.istft( stft_matrix=x[:, ch].T, # [Time, Freq] -> [Freq, Time] hop_length=n_shift, win_length=win_length, window=window, center=center, ) for ch in range(x.shape[1]) ], axis=1, ) if single_channel: # x: [Time, Channel] -> [Time] x = x[:, 0] return x def stft2logmelspectrogram(x_stft, fs, n_mels, n_fft, fmin=None, fmax=None, eps=1e-10): # x_stft: (Time, Channel, Freq) or (Time, Freq) fmin = 0 if fmin is None else fmin fmax = fs / 2 if fmax is None else fmax # spc: (Time, Channel, Freq) or (Time, Freq) spc = np.abs(x_stft) # mel_basis: (Mel_freq, Freq) mel_basis = librosa.filters.mel( sr=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) # lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq) lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) return lmspc def spectrogram(x, n_fft, n_shift, win_length=None, window="hann"): # x: (Time, Channel) -> spc: (Time, Channel, Freq) spc = np.abs(stft(x, n_fft, n_shift, win_length, window=window)) return spc def logmelspectrogram( x, fs, n_mels, n_fft, n_shift, win_length=None, window="hann", fmin=None, fmax=None, eps=1e-10, pad_mode="reflect", ): # stft: (Time, Channel, Freq) or (Time, Freq) x_stft = stft( x, n_fft=n_fft, n_shift=n_shift, win_length=win_length, window=window, pad_mode=pad_mode, ) return stft2logmelspectrogram( x_stft, fs=fs, n_mels=n_mels, n_fft=n_fft, fmin=fmin, fmax=fmax, eps=eps) class Spectrogram(): def __init__(self, n_fft, n_shift, win_length=None, window="hann"): self.n_fft = n_fft self.n_shift = n_shift self.win_length = win_length self.window = window def __repr__(self): return ("{name}(n_fft={n_fft}, n_shift={n_shift}, " "win_length={win_length}, window={window})".format( name=self.__class__.__name__, n_fft=self.n_fft, n_shift=self.n_shift, win_length=self.win_length, window=self.window, )) def __call__(self, x): return spectrogram( x, n_fft=self.n_fft, n_shift=self.n_shift, win_length=self.win_length, window=self.window, ) class LogMelSpectrogram(): def __init__( self, fs, n_mels, n_fft, n_shift, win_length=None, window="hann", fmin=None, fmax=None, eps=1e-10, ): self.fs = fs self.n_mels = n_mels self.n_fft = n_fft self.n_shift = n_shift self.win_length = win_length self.window = window self.fmin = fmin self.fmax = fmax self.eps = eps def __repr__(self): return ("{name}(fs={fs}, n_mels={n_mels}, n_fft={n_fft}, " "n_shift={n_shift}, win_length={win_length}, window={window}, " "fmin={fmin}, fmax={fmax}, eps={eps}))".format( name=self.__class__.__name__, fs=self.fs, n_mels=self.n_mels, n_fft=self.n_fft, n_shift=self.n_shift, win_length=self.win_length, window=self.window, fmin=self.fmin, fmax=self.fmax, eps=self.eps, )) def __call__(self, x): return logmelspectrogram( x, fs=self.fs, n_mels=self.n_mels, n_fft=self.n_fft, n_shift=self.n_shift, win_length=self.win_length, window=self.window, ) class Stft2LogMelSpectrogram(): def __init__(self, fs, n_mels, n_fft, fmin=None, fmax=None, eps=1e-10): self.fs = fs self.n_mels = n_mels self.n_fft = n_fft self.fmin = fmin self.fmax = fmax self.eps = eps def __repr__(self): return ("{name}(fs={fs}, n_mels={n_mels}, n_fft={n_fft}, " "fmin={fmin}, fmax={fmax}, eps={eps}))".format( name=self.__class__.__name__, fs=self.fs, n_mels=self.n_mels, n_fft=self.n_fft, fmin=self.fmin, fmax=self.fmax, eps=self.eps, )) def __call__(self, x): return stft2logmelspectrogram( x, fs=self.fs, n_mels=self.n_mels, n_fft=self.n_fft, fmin=self.fmin, fmax=self.fmax, ) class Stft(): def __init__( self, n_fft, n_shift, win_length=None, window="hann", center=True, pad_mode="reflect", ): self.n_fft = n_fft self.n_shift = n_shift self.win_length = win_length self.window = window self.center = center self.pad_mode = pad_mode def __repr__(self): return ("{name}(n_fft={n_fft}, n_shift={n_shift}, " "win_length={win_length}, window={window}," "center={center}, pad_mode={pad_mode})".format( name=self.__class__.__name__, n_fft=self.n_fft, n_shift=self.n_shift, win_length=self.win_length, window=self.window, center=self.center, pad_mode=self.pad_mode, )) def __call__(self, x): return stft( x, self.n_fft, self.n_shift, win_length=self.win_length, window=self.window, center=self.center, pad_mode=self.pad_mode, ) class IStft(): def __init__(self, n_shift, win_length=None, window="hann", center=True): self.n_shift = n_shift self.win_length = win_length self.window = window self.center = center def __repr__(self): return ("{name}(n_shift={n_shift}, " "win_length={win_length}, window={window}," "center={center})".format( name=self.__class__.__name__, n_shift=self.n_shift, win_length=self.win_length, window=self.window, center=self.center, )) def __call__(self, x): return istft( x, self.n_shift, win_length=self.win_length, window=self.window, center=self.center, ) class LogMelSpectrogramKaldi(): def __init__(self, fs=16000, n_mels=80, n_frame_length=25, n_frame_shift=10, energy_floor=0.0, dither=0.1): self.fs = fs self.n_mels = n_mels self.n_frame_length = n_frame_length self.n_frame_shift = n_frame_shift self.energy_floor = energy_floor self.dither = dither def __repr__(self): return ( "{name}(fs={fs}, n_mels={n_mels}, " "n_frame_shift={n_frame_shift}, n_frame_length={n_frame_length}, " "dither={dither}))".format( name=self.__class__.__name__, fs=self.fs, n_mels=self.n_mels, n_frame_shift=self.n_frame_shift, n_frame_length=self.n_frame_length, dither=self.dither, )) def __call__(self, x, train): dither = self.dither if train else 0.0 waveform = paddle.to_tensor(np.expand_dims(x, 0), dtype=paddle.float32) mat = kaldi.fbank( waveform, n_mels=self.n_mels, frame_length=self.n_frame_length, frame_shift=self.n_frame_shift, dither=dither, energy_floor=self.energy_floor, sr=self.fs) mat = np.squeeze(mat.numpy()) return mat class LogMelSpectrogramKaldi_decay(): def __init__( self, fs=16000, n_mels=80, n_fft=512, # fft point n_shift=160, # unit:sample, 10ms win_length=400, # unit:sample, 25ms window="povey", fmin=20, fmax=None, eps=1e-10, dither=1.0): self.fs = fs self.n_mels = n_mels self.n_fft = n_fft if n_shift > win_length: raise ValueError("Stride size must not be greater than " "window size.") self.n_shift = n_shift / fs # unit: ms self.win_length = win_length / fs # unit: ms self.window = window self.fmin = fmin if fmax is None: fmax_ = fmax if fmax else self.fs / 2 elif fmax > int(self.fs / 2): raise ValueError("fmax must not be greater than half of " "sample rate.") self.fmax = fmax_ self.eps = eps self.remove_dc_offset = True self.preemph = 0.97 self.dither = dither # only work in train mode def __repr__(self): return ( "{name}(fs={fs}, n_mels={n_mels}, n_fft={n_fft}, " "n_shift={n_shift}, win_length={win_length}, preemph={preemph}, window={window}, " "fmin={fmin}, fmax={fmax}, eps={eps}, dither={dither}))".format( name=self.__class__.__name__, fs=self.fs, n_mels=self.n_mels, n_fft=self.n_fft, n_shift=self.n_shift, preemph=self.preemph, win_length=self.win_length, window=self.window, fmin=self.fmin, fmax=self.fmax, eps=self.eps, dither=self.dither, )) def __call__(self, x, train): """ Args: x (np.ndarray): shape (Ti,) train (bool): True, train mode. Raises: ValueError: not support (Ti, C) Returns: np.ndarray: (T, D) """ dither = self.dither if train else 0.0 if x.ndim != 1: raise ValueError("Not support x: [Time, Channel]") if x.dtype in np.sctypes['float']: # PCM32 -> PCM16 bits = np.iinfo(np.int16).bits x = x * 2**(bits - 1) # logfbank need PCM16 input y = logfbank( signal=x, samplerate=self.fs, winlen=self.win_length, # unit ms winstep=self.n_shift, # unit ms nfilt=self.n_mels, nfft=self.n_fft, lowfreq=self.fmin, highfreq=self.fmax, dither=dither, remove_dc_offset=self.remove_dc_offset, preemph=self.preemph, wintype=self.window) return y