# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Scorer interface module.""" import warnings from typing import Any from typing import List from typing import Tuple import paddle class ScorerInterface: """Scorer interface for beam search. The scorer performs scoring of the all tokens in vocabulary. Examples: * Search heuristics * :class:`scorers.length_bonus.LengthBonus` * Decoder networks of the sequence-to-sequence models * :class:`transformer.decoder.Decoder` * :class:`rnn.decoders.Decoder` * Neural language models * :class:`lm.transformer.TransformerLM` * :class:`lm.default.DefaultRNNLM` * :class:`lm.seq_rnn.SequentialRNNLM` """ def init_state(self, x: paddle.Tensor) -> Any: """Get an initial state for decoding (optional). Args: x (paddle.Tensor): The encoded feature tensor Returns: initial state """ return None def select_state(self, state: Any, i: int, new_id: int=None) -> Any: """Select state with relative ids in the main beam search. Args: state: Decoder state for prefix tokens i (int): Index to select a state in the main beam search new_id (int): New label index to select a state if necessary Returns: state: pruned state """ return None if state is None else state[i] def score(self, y: paddle.Tensor, state: Any, x: paddle.Tensor) -> Tuple[paddle.Tensor, Any]: """Score new token (required). Args: y (paddle.Tensor): 1D paddle.int64 prefix tokens. state: Scorer state for prefix tokens x (paddle.Tensor): The encoder feature that generates ys. Returns: tuple[paddle.Tensor, Any]: Tuple of scores for next token that has a shape of `(n_vocab)` and next state for ys """ raise NotImplementedError def final_score(self, state: Any) -> float: """Score eos (optional). Args: state: Scorer state for prefix tokens Returns: float: final score """ return 0.0 class BatchScorerInterface(ScorerInterface): """Batch scorer interface.""" def batch_init_state(self, x: paddle.Tensor) -> Any: """Get an initial state for decoding (optional). Args: x (paddle.Tensor): The encoded feature tensor Returns: initial state """ return self.init_state(x) def batch_score(self, ys: paddle.Tensor, states: List[Any], xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]: """Score new token batch (required). Args: ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen). states (List[Any]): Scorer states for prefix tokens. xs (paddle.Tensor): The encoder feature that generates ys (n_batch, xlen, n_feat). Returns: tuple[paddle.Tensor, List[Any]]: Tuple of batchfied scores for next token with shape of `(n_batch, n_vocab)` and next state list for ys. """ warnings.warn( "{} batch score is implemented through for loop not parallelized". format(self.__class__.__name__)) scores = list() outstates = list() for i, (y, state, x) in enumerate(zip(ys, states, xs)): score, outstate = self.score(y, state, x) outstates.append(outstate) scores.append(score) scores = paddle.cat(scores, 0).view(ys.shape[0], -1) return scores, outstates class PartialScorerInterface(ScorerInterface): """Partial scorer interface for beam search. The partial scorer performs scoring when non-partial scorer finished scoring, and receives pre-pruned next tokens to score because it is too heavy to score all the tokens. Examples: * Prefix search for connectionist-temporal-classification models * :class:`espnet.nets.scorers.ctc.CTCPrefixScorer` """ def score_partial(self, y: paddle.Tensor, next_tokens: paddle.Tensor, state: Any, x: paddle.Tensor) -> Tuple[paddle.Tensor, Any]: """Score new token (required). Args: y (paddle.Tensor): 1D prefix token next_tokens (paddle.Tensor): paddle.int64 next token to score state: decoder state for prefix tokens x (paddle.Tensor): The encoder feature that generates ys Returns: tuple[paddle.Tensor, Any]: Tuple of a score tensor for y that has a shape `(len(next_tokens),)` and next state for ys """ raise NotImplementedError class BatchPartialScorerInterface(BatchScorerInterface, PartialScorerInterface): """Batch partial scorer interface for beam search.""" def batch_score_partial( self, ys: paddle.Tensor, next_tokens: paddle.Tensor, states: List[Any], xs: paddle.Tensor, ) -> Tuple[paddle.Tensor, Any]: """Score new token (required). Args: ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen). next_tokens (paddle.Tensor): paddle.int64 tokens to score (n_batch, n_token). states (List[Any]): Scorer states for prefix tokens. xs (paddle.Tensor): The encoder feature that generates ys (n_batch, xlen, n_feat). Returns: tuple[paddle.Tensor, Any]: Tuple of a score tensor for ys that has a shape `(n_batch, n_vocab)` and next states for ys """ raise NotImplementedError