# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Language model interface.""" import argparse from paddlespeech.s2t.decoders.scorers.scorer_interface import ScorerInterface from paddlespeech.s2t.utils.dynamic_import import dynamic_import class LMInterface(ScorerInterface): """LM Interface model implementation.""" @staticmethod def add_arguments(parser): """Add arguments to command line argument parser.""" return parser @classmethod def build(cls, n_vocab: int, **kwargs): """Initialize this class with python-level args. Args: idim (int): The number of vocabulary. Returns: LMinterface: A new instance of LMInterface. """ args = argparse.Namespace(**kwargs) return cls(n_vocab, args) def forward(self, x, t): """Compute LM loss value from buffer sequences. Args: x (torch.Tensor): Input ids. (batch, len) t (torch.Tensor): Target ids. (batch, len) Returns: tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar) Notes: The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n) """ raise NotImplementedError("forward method is not implemented") predefined_lms = { "transformer": "paddlespeech.s2t.models.lm.transformer:TransformerLM", } def dynamic_import_lm(module): """Import LM class dynamically. Args: module (str): module_name:class_name or alias in `predefined_lms` Returns: type: LM class """ model_class = dynamic_import(module, predefined_lms) assert issubclass(model_class, LMInterface), f"{module} does not implement LMInterface" return model_class