# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle from yacs.config import CfgNode from paddlespeech.audio.utils import logger from paddlespeech.audio.utils import Timer from paddlespeech.kws.exps.mdtc.collate import collate_features from paddlespeech.kws.models.loss import max_pooling_loss from paddlespeech.kws.models.mdtc import KWSModel from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.utils.dynamic_import import dynamic_import if __name__ == '__main__': parser = default_argument_parser() args = parser.parse_args() # https://yaml.org/type/float.html config = CfgNode(new_allowed=True) if args.config: config.merge_from_file(args.config) nranks = paddle.distributed.get_world_size() if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() local_rank = paddle.distributed.get_rank() # Dataset ds_class = dynamic_import(config['dataset']) train_ds = ds_class( data_dir=config['data_dir'], mode='train', feat_type=config['feat_type'], sample_rate=config['sample_rate'], frame_shift=config['frame_shift'], frame_length=config['frame_length'], n_mels=config['n_mels'], ) dev_ds = ds_class( data_dir=config['data_dir'], mode='dev', feat_type=config['feat_type'], sample_rate=config['sample_rate'], frame_shift=config['frame_shift'], frame_length=config['frame_length'], n_mels=config['n_mels'], ) train_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=config['batch_size'], shuffle=True, drop_last=False) train_loader = paddle.io.DataLoader( train_ds, batch_sampler=train_sampler, num_workers=config['num_workers'], return_list=True, use_buffer_reader=True, collate_fn=collate_features, ) # Model backbone_class = dynamic_import(config['backbone']) backbone = backbone_class( stack_num=config['stack_num'], stack_size=config['stack_size'], in_channels=config['in_channels'], res_channels=config['res_channels'], kernel_size=config['kernel_size'], ) model = KWSModel(backbone=backbone, num_keywords=config['num_keywords']) model = paddle.DataParallel(model) clip = paddle.nn.ClipGradByGlobalNorm(config['grad_clip']) optimizer = paddle.optimizer.Adam( learning_rate=config['learning_rate'], weight_decay=config['weight_decay'], parameters=model.parameters(), grad_clip=clip) criterion = max_pooling_loss steps_per_epoch = len(train_sampler) timer = Timer(steps_per_epoch * config['epochs']) timer.start() for epoch in range(1, config['epochs'] + 1): model.train() avg_loss = 0 num_corrects = 0 num_samples = 0 for batch_idx, batch in enumerate(train_loader): keys, feats, labels, lengths = batch logits = model(feats) loss, corrects, acc = criterion(logits, labels, lengths) loss.backward() optimizer.step() if isinstance(optimizer._learning_rate, paddle.optimizer.lr.LRScheduler): optimizer._learning_rate.step() optimizer.clear_grad() # Calculate loss avg_loss += float(loss) # Calculate metrics num_corrects += corrects num_samples += feats.shape[0] timer.count() if (batch_idx + 1) % config['log_freq'] == 0 and local_rank == 0: lr = optimizer.get_lr() avg_loss /= config['log_freq'] avg_acc = num_corrects / num_samples print_msg = 'Epoch={}/{}, Step={}/{}'.format( epoch, config['epochs'], batch_idx + 1, steps_per_epoch) print_msg += ' loss={:.4f}'.format(avg_loss) print_msg += ' acc={:.4f}'.format(avg_acc) print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format( lr, timer.timing, timer.eta) logger.train(print_msg) avg_loss = 0 num_corrects = 0 num_samples = 0 if epoch % config[ 'save_freq'] == 0 and batch_idx + 1 == steps_per_epoch and local_rank == 0: dev_sampler = paddle.io.BatchSampler( dev_ds, batch_size=config['batch_size'], shuffle=False, drop_last=False) dev_loader = paddle.io.DataLoader( dev_ds, batch_sampler=dev_sampler, num_workers=config['num_workers'], return_list=True, use_buffer_reader=True, collate_fn=collate_features, ) model.eval() num_corrects = 0 num_samples = 0 with logger.processing('Evaluation on validation dataset'): for batch_idx, batch in enumerate(dev_loader): keys, feats, labels, lengths = batch logits = model(feats) loss, corrects, acc = criterion(logits, labels, lengths) num_corrects += corrects num_samples += feats.shape[0] eval_acc = num_corrects / num_samples print_msg = '[Evaluation result]' print_msg += ' dev_acc={:.4f}'.format(eval_acc) logger.eval(print_msg) # Save model save_dir = os.path.join(config['checkpoint_dir'], 'epoch_{}'.format(epoch)) logger.info('Saving model checkpoint to {}'.format(save_dir)) paddle.save(model.state_dict(), os.path.join(save_dir, 'model.pdparams')) paddle.save(optimizer.state_dict(), os.path.join(save_dir, 'model.pdopt'))